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Outline

This seminar will be loosely split up into three parts:
» Background and motivation
> Statement of results

» Further research
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Symmetry in physics

The story of modern theoretical physics is inextricably linked with the
study of symmetry in its myriad manifestations.

Some famous examples of symmetry and uses of symmetry in physics
include

> Special and general relativity: Invariance under Poincaré and
general coordinate transformations respectively dictate dynamics
to a large extent.

» Noether’s theorem: Every continuous symmetry of a system
generates a conserved quantity.

> Wigner and group theory: Studying unitary irreducible
representations of the Poincaré group explains the origin of spin
and elementary particles in quantum field theory [1].
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Reminder on differential geometry

A torsion-free, metric compatible, covariant derivative, V,,, is an
extension to the partial derivative, 0y,, for differential geometry. Then,

Vi, Vo]VP = RF VY,
where RP gmn 1s the Riemann tensor. Some descendants include
Ry = R?,,,,, R=R", and
Crnpg = Rmnpg + %(gqunp + gnpLimg — GmpBing = gngBmp)
1

+ g(gmpgan - gmqgnpR) .

e.g. The Einstein field equation is

1
Rpyn — igmnR =81G T -
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Killing vectors

An isometry of the metric, g, (z), is a change of coordinates,
2™ — '™ such that

In () = Gorn () -
When /™ = 2™ — ™ () for infinitesimal ™ (x),
0gmn () = Grun (T) = Gmn(7) = Vin&n(2) + Vn&m(2)
A Killing vector, {™(x), is one that satisfies
Vimén () + Vném(z) = 0

and hence generates symmetries of a curved spacetime, e.g.

()

is conserved along a geodesic.
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Killing tensors

A symmetric tensor, £ (z), is called “Killing” if and only if
vrgmima) gy = 0.
For any Killing tensor, ™" (x),

dz™(\)  da™e())

g @) =y 2+ S

is conserved along a geodesic.
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Conformal Killing vectors

A conformal Killing vector, £™(x), is one which preserves the metric
up to scale. For that, when /™ = 2™ — £™(x),

6Gmn () = Grn () — gmn (2) = Vinbn(2) + V() < gomn(z)

1
- vmfn + vngm = §gmnvp§p .

For a conformal Killing vector, £™(z),

is conserved along a light-like geodesic, i.e. when

dz™(X) day, (N)

d\ o
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Conformal Killing tensors

A symmetric and traceless tensor, %% (z), is called “conformal
Killing” if and only if the traceless part of V(°£%1 ) is zero.

For a conformal Killing tensor, £% % (z),

da™(X)  dame())
a D)

Emi-ma (€(X))

is conserved along light-like geodesics.
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Towards higher symmetry

A vierbein is a new tangent space basis, {e,™(x)0m,}3_, such that
gmn(x)e, " (x)e," () = ngp. Indices are converted by

Va(z) =€, () Vin(x) and Vi, (z) = e,,*(z)Va(x)
where e,,%(x) = (e, (x))~! as matrices.

Under infinitesimal general coordinate, local Lorentz and Weyl
transformations, i.e. '™ = 2™ — ™ (x),

¢ M(x) = e, () + K, (x)e,"(z) with K, = —Kp, and

e, (x) = (14 o(x))e,™(x) respectively (£, Ky, and o all
infinitesimal), the covariant derivative changes as

1
6V, = |E"V, + §Kbchc, Va| +0Va — V(o) My, .
Furthermore, 6V, = 0 if and only if {*(z) is a conformal Killing vector,

Kb = }(VPee — Vegb) and o = {V,€° [2].
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Higher symmetries

Given a differential operator, F, acting on a tensor field, T'(x), a higher
symmetry is a scalar, linear, differential operator, D, such that
FDT = 0 whenever FT = 0.

Besides their motivation as symmetries in their own right, higher
symmetries also have applications in

» Finding solutions of partial differential equations on arbitrary
manifolds via separation of variables [3].

> Parallel’s between the algebra of higher symmetries and higher
spin algebras [4].
Goal: Develop techniques to compute higher symmetries in curved
spacetime.
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Conformal d’Alembertian

The action for a free, massless, real, scalar field, p(z), is

§=—2 / 0%(10) B ()

in flat space. Lifting to curved space, a conformally invariant action is

1

1
S = —2/ <V“(gp)va(gp) - 6Rg02>ed4w where e = det(e,,,"),

provided ¢'(z) = e”@(z) upon €, (z) = e”@e, ().

The equation of motion for the matter field, ¢, is then

1
Ap = <D—6R><p:0.
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Conformal d’Alembertian - 1st order

The conformal d’Alembertian, A = [ — éR, has a unique 1st order
higher symmetry,

1
DW = ¢rv, + Zva(,sa) + ¢,

where £%(z) is an arbitrary conformal Killing vector of the manifold
and £ is any constant.
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Conformal d’Alembertian - 2nd order

At 2nd order, A has a unique (up to the addition of 1st order
symmetries) physically admissible higher symmetry candidate,

2 1 3
D) = £,V + SV (E")Va + 75 Va V(€)= 15 Rart™,

where £%°(x) is an arbitrary conformal Killing tensor of the manifold.
However, D) may not be a symmetry in general. Instead,

ADPp = (O T + STHCH)E" )Vl

2
I (woabcdvav%gbd) + 5V0Vd(0dabc)£“b

4
+ Bvd(c abc)vc(fab)>

# 0 in general.
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Massless Dirac operator

The action for a free spinor field is

a

Sle,™, ¥ = —% /\Ilyava(\Il)e d*z where e = det(e,,%) .

The equation of motion for the matter field, ¥, is then
YV, =0.

g m

The action is Weyl invariant provided ¥’ = e37/2®% upon ¢/,™ = e¢,™.
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Massless Dirac operator - 1st order

To convert between spinor notation and vector notation,
a L. 7"
Vaa = (Ua)adv s Vo= _i(o'a) Vao'm
where (04)aa = (I,5) and (6,)% = (I, —3) [5)].
The massless Dirac operator, v*V,, has a unique 1st order symmetry,
D(l Eaav + v gﬁ)aM s + V (agoz,B
+ gvdd(gaa) + fa

where £€%¢(z) is an arbitrary conformal Killing vector of the manifold
and ¢ is an arbitrary constant.
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Massless Dirac operator - 2nd order

At 2nd order, vV, has a unique (up to the addition of 1st order
symmetries) physically admissible higher symmetry candidate,

D@
aBaf 2 af 2 ¥ B35 AT
= g A Bvadvﬁ/fj + gv(a '567) BvadM,B’Y + 7V (045 ﬁﬁv)vadMB;Y
8

+ 5V 5a(67) Vaa + ( AR OLL 3E( s >W>Maﬂ

2
(& oz/o’ﬁ ) E aﬁﬁ M.

7

0 a,@a,@ 506504/3

where fo‘ﬁ‘m is an arbitrary conformal Killing tensor of the manifold.
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Massless Dirac operator - 2nd order continued
However, D®) may not be a symmetry in general. Instead,

av D |:¢a:|
X
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Further research

There are two major unanswered questions at the end of the project

» Necessary conditions of the manifold so that the 2nd order
operators I derived do result in symmetries

> Generalisation to higher orders

Techniques such as “conformal geometry” which are better tailored to
the operators considered will make calculations easier.
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