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Abstract

This work considers positive energy theorems in asymptotically, locally AdS spacetimes.
Particular attention is given to spacetimes where conformal infinity has compact, Einstein
cross-sections admitting Killing or parallel spinors; a positive energy theorem is derived for
such spacetimes in terms of geometric data intrinsic to the cross-section. This is followed
by the first complete proofs of the BPS inequalities in (the bosonic sectors of) 4D and
5D minimal, gauged supergravity, including with magnetic fields. The BPS inequalities
are proven for asymptotically AdS spacetimes, but also generalised to the aforementioned
class of asymptotically, locally AdS spacetimes. I wrote these notes in the process of
producing [I]. The presentation here is much more pedagogical and written in a much
more informal (but more opinionated) style. Some of the material has been superseded
by [1] and there were only ever very limited checks of these notes.
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1 Introduction

The positive energy theorem stands as one of the most treasured and significant results in
mathematical general relativity - originally proved by Schoen & Yau based on minimal surface
methods [2] and soon after by Witten [3] based on spinor techniques. Witten’s method sug-
gested a number of extensions, including allowing a negative cosmological constant - the focus
of the present work. The first positive energy theorems for asymptotically AdS spacetimes
[4, 5] followed soon after Witten'’s original work and were based on the Abbott-Deser definition
of energy & asymptotics [6].

However, in the age of holography, a more natural choice of asymptotics is one based on a
Fefferman-Graham expansion [7, [, @]. In particular, the Einstein equation is solved order by
order from a timelike conformal boundary and the geometry of the boundary itself is arbitrary;
the case of a static R x S? boundary reduces to the asymptotically (globally) AdS case. Rig-
orous definitions of energy were given in the latter context by [10] 11} 12] and corresponding
positive energy theorems were subsequently provenE|.

Having understood the “global” case, the next logical extension is the “local” case. The
example of a toroidal boundary was considered in [13] and a more general analysis was per-
formed in [I4]. One of the main aims of this work is to built upon the latter. I will adopt a few
conceptual differences though. Most saliently, I will not follow the holographic renormalisation
[9] approach pursued by [14]. Instead, energy will be defined using the background subtrac-
tion and Hamiltonian methods of [I5], 12, [I1]. Furthermore, Killing spinors will play a crucial
role in the analysis. To this end, I develop a general formula for imaginary Killing spinors
on time-symmetric metrics with cross-sections admitting either parallel or real Killing spinors.
This formula allows a derivation of a positive energy theorem based on data intrinsic to the
cross-section. The theorem decomposes the “Witten-Nester” energy [16] of [14] into further
“conserved quantities” built from symmetries of the boundary geometry.

Given the deep connections between Witten’s method and supergravity [17], another natu-
ral extension is to try prove BPS inequalities for (the bosonic sectors of) supergravity theories.
This was realised very soon after Witten’s original work to prove global mass-charge inequali-
ties in asymptotically flat spacetimes in four and five dimensions [I8] [19]. While some results
already exist along these lines [20] 21, 22] in the context of asymptotically AdS spacetimes
- i.e. in gauged supergravity theories - the magnetic field is set to zero in [20] and a non-
gauge-covariant connection is used in [21], 22], thereby leading to some unnatural assumptions
- which in fact never hold in electrovacuum - and different results to the present work when
incorporating magnetic fields. I aim to build upon the literature by providing a more complete
treatment of magnetic fields in the study of classical energy-charge inequalities with negative
cosmological constant.

!'Note that in the former two references, the asymptotics considered are Riemannian, not Lorentzian, and
should be viewed as asymptotics for an initial data slice.



I begin in section , by deriving a definition of energy based on the techniques in [23] and
[15]. However, I will not consider questions of geometric invariance & la [24], [10] or [12]. My
main positive energy theorem - theorem - follows in section [3] T use a Witten-style spino-
rial proof [3] and relevant spin assumptions will be stated as they arise. My presentation relies
heavily on work in [25], [26] and [27] - especially the analysis of the Dirac operator and the use
of modified, more general spin connections. In section [, I'll apply my main result - theorem
- to various examples. To illustrate the effects of the boundary geometry, as a running
theme I will compare asymptotically AdS spaces - with R x S"~2 boundary - to spaces with
R x T"~2 boundary. In section , based on the analysis in [13], I will also give a more complete
analysis of the “Witten-Nester energy” than [28] or [14] and explain its relationship with the
energy I define in section [2 In section [£.3] T consider general static boundary metrics with
a parallel or Killing spinor on the cross-section and derive a positive energy theorem which
is much more manifestly dependant only on the boundary data. The theorem is illustrated
with some more exotic boundary geometries such as R x L(p,1). Section I will consider the

minimal, gauged supergravities. The main results are theorems [3.19, , 13, 14, [E17]
7 7 7 and

Finally, readers are highly encouraged to familiarise themselves with my notational conven-
tions - as listed in appendix . I will use a litany of different types of indiceﬁ. Furthermore,
only a very naive person would assume two people have common spinor/gamma matrix con-
ventions.

2 Hamiltonian formulation

Definition 2.1 ((n — 1) + 1 split). The metric, g, is said to be written in an (n — 1) 4+ 1 split
of and only iof

g =—N?dt ® dt + h;;j(dz’ + N'dt) ® (da? + N’dt) (1)
for some h;;, N*, N and coordinates, (t,x").

It is well known that this split admits a Hamiltonian formulation by the ADM formalism [29]
- see also textbook treatments in [30] or [3I]. T'll recount the story briefly. N and N* turn out
to be auxiliary fields and one finds the conjugate momentum to h;; is

bij = \/E<Kij - Khij)a (2)
where h = det(h;;) and K;; is the extrinsic curvature of 3, namelyﬂ

1

K=oy

(athij ~ DN, — DJ(.h)Ni) , (3)
where D™ refers to the Levi-Civita connection of hij.

Then, up to boundary terms, one finds the Hamiltonian (arising from the Einstein-Hilbert
Lagrangian with cosmological Constantﬁ) is

1 1 .. 1 4 . 1
H=— N =pipy; — ———p* —R® 420 ) —2N' DI [ —p,. ) | dV. (4
167 Et( (hp P gt T JiPi (4)

2You have been warned.
34, j,--- indices are raised and lower by the h metric in the ADM formalism.
4The matter Lagrangian doesn’t need to be considered in this process of defining gravitational energy.




I will take the same perspective as [23] and [15] in advocating energy to most simply be defined
as the value of the Hamiltonian. However, by the constraint equations, the H in equation [ is
zero when the Einstein equation holds, suggesting the energy is always zero. The resolution is
that the boundary terms do matter. As explained in [23], these boundary terms are essential
to have a well defined variational principle. As shown in [23] 15, B0}, 31], upon a variation to
the metric, when the equations of motion hold, the Hamiltonian changes as

1670 H = — / N (D<h>ﬂ'5hij - D§h>(hﬂf5hjk)) dA — 2 / NI (K — Khy;)dA
Ooo Xt 0,

ooEt

+/ /i <D(h>j(N)6hij - hjkahjkDg")N) dA
Ooo 2t

1 . . .
+ N —=6(hj) (Lp"* — pal'h?* 4 2pf17) d A, 5
VT (hjr) (Lip"* — pa ;1) (5)

where 0,.)); denotes the “boundary” at infinity of a constant t surface, Y,, and [’ is the
(outward pointing) normal to d,,3;. The first and thrid integrals come from R®’s variation,
the second integral comes from 0(p;;/ V/h) and the fourth integral comes from the variation of
the Christoffel symbols when D"™7 acts on Dij/ Vh.

One then defines the true Hamiltonian, H’ say, to be H + E, where E is some quantity such
that that )E = —dH. Hence, 6 H' = 0 when the equations of motion hold and the energy - the
on-shell value of H' - is just E.

To make further progress, one needs to choose asymptotics, so the integrals in 0 H can be
evaluated more precisely. In this work, I'm interested in asymptotically locally AdS spaces.

Definition 2.2 (Asymptotically locally AdS). A spacetime, (M, g), is said to be asymptotically
locally AdS if and only if only if 3 coordinates, (z,x™), in an open neighbourhood of the “bound-
ary” at mﬁnz’tgﬂ such that {z = 0} is the “boundary” itself and g admits a Fefferman-Graham

expansion| [7),

1 1 m "
for some fxymn that do not depend on z. By defining r = —In(z), the “boundary” becomes
{r = oo} and
g=dr®dr+ e (f(o)mn + efrf(l)mn + ef2rf(2)mn + - ) dz™ @ dx™. (7)

The series, foymn + € f1ymn + €2 f@ymn + -+ -, will be denoted fr, (when summed).

The first n—2 terms of f,,, are uniquely determined by the curvature of fgymn [7], i.e. specifying
f0) specifies f up to O(e==2r).

Definition 2.3 (Asymptotically AdS). A spacetime, (M, g), is said to be asymptotically AdS
if and only if it is asymptotically locally AdS and

fmndz™ @ dz"

1 2 1 2
= _ (1 + Ze%) dt ® dt + (1 — Zezr) ggn—2 + e’(”’l)rf(n_l)mn dr" @da" +---. (8)

SFirst of all, such a notion of “boundary” at infinity should exist on (M, g).
6This expansion implicitly sets the “AdS length scale,” to 1. Equivalently, one would choose units such that
the cosmological constant is A = —1(n — 1)(n — 2). The length scales can always be restored on dimensional

grounds.



Equivalently,

1,0\ L)
g=dreodr+e” (— (1 + Ze_%) dt ® dt + (1 - Ze‘”) gsn—2 + 0(6_(”_1)T)> (9)

= gAdS + eQr (e_(n_l)rf(nfl)mn + R ) dZEm ® dxn (]_0)

Note that when n < 5, there is an annoying subtlety that the “background metric,” gaqgs, goes
to an order in e~ at least as high as the “leading correction” term, e~ (»~1" Jfin—1ymn dz™ @dz".
In such cases, especially in definition later, I will always also include these fixed higher
order terms in the background metric.

Having established asymptotics, I can now calculate the boundary integrals in equation

Since f(1), f2),*** , f(n—2) are determined by f) and the Fefferman-Graham expansion always
includes an exact dr ® dr factor, I should let
69 =€ (""" V5 f1yn + O(e™™)) da™ @ da™ (11)

in following the “background subtraction” method of [23] and [15]. Again, for n < 5, asymp-
totically AdS spactimes, the higher order terms of — (1 + ie_%)2 dt @ dt + (1 — Z—lle_%)2 Ggn—2
are included in the background metric and not considered in dg.

Theorem 2.4. For variations given by equation

n—1 rmn Fmp pn mn
SH = —5( /8 . ((Fiar+ 18 Far T S S0a) Fontymn = 508 585 Foyon finryom)
o0 ~it

167
X ,/L*f(o)/f(()()o)d"_%) (12)
where e™" ~(’g)” = e_Qr(f(%"”)” + nign{p)) is the induced (inverse) metric on constant t and r

surfaces and 1" f(y is the pullback of f) to constant t surfacefﬂ.

Proof. As I'm using Fefferman-Graham coordinates, I* = §**. Hence, equation |5 becomes

1676 H = — / N (D(h)iéhu - D&“(hijcsmj)) dA — 2 N6 (Ky; — Khy;) dA
800215 8oozt
+ / (D(h)i(N)(Shli - hijéhingh)N) dA
Ooo Xt
1
9oz VI

Furthermore, comparing equations [T] and [7] it immediately follows that

N; = e* 6% foa, —N? + N'N; = e* foo and (14)
oo |1 0
hij = 61651 + e”"§ ¢5ijaﬁ = lo egrfaﬂ} . (15)

Since N; = 0, it follows that famzt X/LE(S(h,-j)NlpijdA = 0.
Because f is artificially split in this way, I will denote the inverse of the (n — 2) x (n — 2)
matrix, f.z, as j°°.

T
. v =
SR = {0 e_grjw] (16)

i.e. \/—t*f(o) is the square root of the determinant of (n — 2) x (n — 2) matrix that is f(o) restricted to
constant ¢ surfaces.



Note that j# is not the («, 3) component of f™*; the two are related by

M= ! ; 08 .a_.j['?fo“"aﬁ s 1 because (17)
Joo—J d’fo@fw 3 foy 3% foo + (59757 — 5% 37°) for fos
1 1 —37 fos ] {foo fo,@} (18)
foo — 7% foo foo | =7 fos 57 foo + (757 = 5°75°) fos foe| | for fys
_ 1 Joo — 57 fos foy fos = 37 fos frs } (19)
foo = 3% foa fos | 0 —5% fosfos + 37 fooSys + (57057 — 5*75%) fos foe frp
_ 1 [ foo — 37° fos for Jos — 85 fos } (20)
foo = 3% foa fos | 0 —5% fos fos + 0%5 foo + (77005 — 6%55°) fos foe
1 0 }
ool 1)
[0 0%
Anyway, with this definition,
Ni _ hz]N _ e—2r5i 5]' a3 21"5’}/ f 0y = 5iajaﬂf06- (22)
Nl = (Sla]aﬁf ﬁGQT(SV fO'y = e j ﬁanfO,B (23)

SN = /NiN; —e? foy = er\/jaﬁanfOﬁ — foo = er\/ —%- (24)

Similarly, in the (n — 1) + 1 split, h;; is just the “space part” of g, so

= 5im5j”e_("_3)r(5f(n_1)mn + O(e~"=2") by equation (26)
_ 6ia6jﬁe_(n_3)r5f(n—l)aﬁ + O(e—(n—Q)’l‘)' (27)

An immediate corollary is that dhy; = 0; this is effectively just stating that the dr @ dr part of
the Fefferman-Graham expansion is unchanged.

" Jous, DWI(N)ShydA and [, o == 25(h21)NJpJ’dA are both zero in equation
Next I'll likewise calculate all the other terms in integrands of equation [I3] It Wlll suffice to
calculate them to leading order, as will become apparent later.

h96h; DIV N = e~ =07 5985 fi 1050, (N) (28)
= 985 o 1)apr (GT \/jaﬁanfoﬁ - f00> by equation (29)

= e_(n_l)TNjaﬁéf(n_l)a/g. (30)

D™ (hish,,) = 8, (hija.a(sﬂe—<n—3>raf(n_1)a5) (31)

_a ( (n—1)r a'B(an 1045) (32)

—(n—1)e V585 fi 1)as. (33)

DWigh,; = hi D 5hy, (34)

— il (a Shy; — T Ghy — <h)’“ij5h1k) (35)

=0 — hT™E hy — 0 (36)

_ _6727“]‘0”F(h)ﬁlryei(nizg)ré‘f(nfl)aﬁ (37)



The Christoffel symbol simplifies as
1 ..
r? - 17 (Orhoi + 03 hiy — D)

1
= 5]156 (&«hvg + 0yhs1 — 0)
1

— 58_27“]"8687«(827"][‘75) + 0
1 —r 36 —2r
zéﬂw—ée j(ﬂ)fm(s—l—O(e .

. DWish,, = —e~ (1) 7"jo“ﬁ(5(}”(71,1)065 to leading order.

N'6(Khy) =625 fosd(Khi) = j*° fosd(Khia) = 0
1 i 6 —(n—3)r
—=08(hij)N*pr h? = (K1 — Khgy)3*, 5% foge™2rj1%e=(n=3) 0 f(n—1)y
Vh
= UKoy — 0)5° fo557°0 fin1)rs

For this expression, start by calculating K,;.

1
Kal == ﬁ(athal — Déh)Nl — Dgh)Na)

|
=0 — 5 (DN + D N,)

1 h)i h)i
_ 2N (a Ny — 1™ N, 1+ 9N, — T )alNi>
———(0—1"% N;+0,N, — 1" Nﬁ)

_N

N
(e

2
—0, Ny + 2N, = —0, 0oa + € fayoa + ) + 2(62Tf(0)0a +e" faya + 1)
=e"fu 0a+2f Yoo 3¢ f3)0a + -
1 , B
S Ko = ﬁer (f(l)()a - j(ﬁ();f(l)yaf(O)OB +O(e ))

:%V_f(JO(f ](of 'yozf OB+O( _T)>~

Thus, to leading order,
1
Vh

which integrates to zero because the measure, dA, is only O(e("=2r).
Finally, there’s

7 1 n— « .
§(hij) N*pa 7 = ¢ ~mDry /00598 £5 576 Fln1yy (f(1)0a +.](9£f(1)604f(0)0¢> ;

N'K; = fop0 Ko

= Jaﬂf065 (

5N <—8TNQ + 2F(h)71aN7)> from equation

1
= 7 fosd (ZN (=0, Ny + 2N, —l—jM@,.(fm)Ng)) by equation

( 2N, +e” j )f(l)ng +O0(e™) + 8TNC,> by equation .



To leading order

5 (L) (=0, Noi+ 2Ne + 570, (fr0) Ns)

2N

r By 1 .
=e (f(l)()a ~Jo f(l)mf(o)()ﬁ) _W(S(N) by equation |52 (59)
= O(e"e ¥ere™(nr) (60)
= O(e_(n_1)7)7 (61)

which integrates to zero because the measure, dA, is only O(e®~2"). Hence, to leading order,

Ni§K; = 2 ajj@% (=0, Na + 2N + 570, (fs) N, ) - (62)

6 (=0, Ny +2N,) = (n — 1)e” "5 f(, 10 by equation [52| (63)
0 (5770, (fra)Nsg) = 0 (€*577 (—e ™ frayya — 267> fayra — =) fos) (64)
= —(n = 1)67(”’3)’17'57f(o)ogdf(n_l)m to leading order (65)

N = e o (6 00 — 57 fond fray) (66)

2N
Substituting all these results back into equation [I3] T get,

1670 H

_ / (Ne—(n—l)rjaﬁéf(nl)aﬁ . N(’)’L . 1)e_(n_1)rjaﬁ6f(nfl)aﬁ
0o Xt

n — 1
— e ()r aﬁfﬁ (5fn 1)0 _] waCSf(n 1)5a) —€ ~n= 1)T‘Njaﬁéfn 1 aﬁ)dA (67)

n—1

1
:/v(9 (Ne_(n Lr aﬁéfn 1ap + Ne ~(n=9)r anOB (5fn 1)0 _j fO’y(Sf(n 1)6a>>dA (68)
ooEt

1
- [ e T(aﬁéfnl o+ 256 7 fo (0 = 57 i o 1)5a)>dA (69)

L n=2)r [ -« ! .
= / \/ _ﬁe (n=2) (J P8 fin—1yas — 5% fos (0 fn-1)00 — 57° for fin—1)sa) )
oozt

x ey S fqn 2y (70)

v f
fOO

My earlier assertion that it suffices to go to leading order is now apparent. Anything higher
than leading order for f,j etc. would integrate to zero in this expression, due to the r — oo
limit. Then, also noting that fo) is unaffected by the variation, the result is

:/8 > ( "8 fiarios = 5% fos (3 finryon = 77 find fin 1)5a>> A"z (71)

167'[' o e
6H_6(/8 . ((j(o + [ J)J{Z‘S)f )0v J(0 oa) ftn-1)ap — f((])](oL);f(O)OBf(n—l)Oa)

X 4/ L*f(o)/f(ooo)dn_Qx) . (72)



To see the final claimed result, it suffices to show f(’g)” =0",0" j('a[;.
To see this, first note that n ), = —e™"Ndt (as can be seen from equation . Then,

- 1 { 1 —i7 for ] |:_Ne—r:| 73)
O foo — 5% foo.foo [=5% foy 3% foo + (5757 = 5% 57°) for fos 0 o
Ne™™ 1
= - : .o 74
Joo —]0¢f00f0¢ l—J BfoJ r—0 ( )

\/W [ J(o )1f< )OB] (75)

and finally
f = f) + n{0)"(0) (76)
= _fooo -1 5 ,gf(O)OW 55
O Gt Fooy =ity oo = Giodie) — Jndto)) fown fop
1 _jﬂvf(D)O'y
- fOO oY .oy - 5(0) (77)
O =58 Foyor 30y Foos foyon
0 0
00
= _ o , 78
o) {O Ji (= Foyoo +]&Y()(5)f(0)vf(0)6):| (78)
0 O ]
(79)
[0 Jo
Putting this result into equation [72| completes the proof. U

I should interpret 0 H as —d F, as discussed earlier. Thus, I immediately generate the definition
of energy I'll be using in this work.

Definition 2.5 (Energy). The energy is defined to be
n—1

167 /6 5 <<fmn + fOO fmpf( f Opf(O)OQ> f(nfl)mn - f(OOC;f(Tg)nf(O)Onf(nfl)Om>

Xy /L*f(o)/fg)o)d"_%, (80)

where e_QTf(’g)" = e_QT(f(m)” + nipn{p)) is the induced (inverse) metric on constant t and r
surfaces and v* f is the pullback of f) to constant t surfaceﬂ

FE =

Corollary 2.5.1. For asymptotically Kottler metm’cﬂ

n—1 rmn [ % n—2
E = 16+ /8002t f(O) f(n—l)mn L f(o)d Z. (81)

Proof. The Kottler metrics are

dR®dR
k+ R?

where k = 1,0, —1, ¢ is the metric on the unit (n — 2)—sphere, ¢’ is the metric on a
unit (n — 2)—torus and g~V is the metric on a compact identification of (n — 2)—dimensional
hyperbolic space.

In particular, these metrics have f)m,dz™ @ da" = —dt ® dt + g, O

—(k + R*dt @ dt + + R?g®), (82)

8i.e. \/—1*f(o) is the square root of the determinant of (n — 2) x (n — 2) matrix that is f(g) restricted to
constant ¢ surfaces.
9See equation [82| for what I mean by a Kottler metric.

9



This corollary means definition is a very natural, Lorentzian analogue of the Wang energy
for asymptotically Poincaré-Einstein Riemannian manifolds, defined in [10, [32].

Also note that in the case of vacuum spacetimes, the Fefferman-Graham expansion requires
fi0) fn—1ymn = 0 as a result of the Hamiltonian constraint on constant r hypersurfaces [33)].
Hence, fgg)” fin—1ymn = n%)n?o) Jfin—1ymn- I fn—1)ymn is viewed as an energy-momentum tensor,
then n%)n?o) f(n—1)ymn would indeed be what one naturally associates with energy density. It
turns out the “true” energy momentum tensor one requires for AdS/CFT applications is ac-
tually f(,—1)mn With corrections from the “conformal anomaly” [33, [34], but that will not be
relevant for the present analysis.

Furthermore, I will not assume f(’g)” ftn—-1)ymn = 0 because I will not assume the spacetime is
vacuum. Since the Hamiltonian constraint is changed by the presence of non-zero Ty, it may
be that f(’g)”f(n_l)mn is also adjusted depending on T,,’s decay rate.

3 Positive energy theorem

I will follow the Witten-style spinorial proof of the positive energy theorem [3]. Naturally, this
will rely on (M, g) actually admitting spinors. To keep Lorentz invariance manifest and to
avoid introducing extrinsic curvature terms, I will adopt Nester’s formulation [16] of Witten’s
argument. The techniques of my proof are adapted from those developed in [27, 26], 25] and
[14] for the asymptotically flat and the asymptotically locally AdS cases respectively. 1 will
only consider complete spacetimes for simplicity. However, (marginally) outer trapped surface
(inner) boundaries{T_UI can also be very naturally be accommodated into the analysis using the
techniques of [4].

3.1 Elements of analysis

This subsection is devoted to sketching a proof that a certain modified Dirac operator admits
a Green’s function. Readers willing to take this fact for granted - as is often done to varying
extent in the physics literature [19, 18, 21] - may assimilate the opening definitions and skip
ahead to subsection Historically, establishing the Green’s function has been attempted
via different approaches and with varying levels of rigour - from the highly technical operator
analysis methods of [35, 24], to the weighted Poincaré inequality methods of [27, 26 25] to
the more heuristic method of the original [3]. In my sketch below, I will attempt to strike
something of a compromise.

Definition 3.1 (M and A,). Define the matriz, M, by
M = 4xT%~0y, + v DAy +ia(n — 2) (v A; + Aly?) — Aly17 A, (83)
where A, is some unspecified matriz. Assume the following conditions holds.
o vV A; is hermitian.

o [[Allo = O(e=""V") near 0.5, where || - ||o denotes the operator norm, i.e. the biggest
(by absolute value) eigenvalue of the matrix.

o M is non-negative definite.

o ||M||o decays quicker than O(e™ "=V near 0,,%;.

10These boundaries are typically interpreted as proxies for black holes.

10



_ 1[I
e« o=1]T

° Elflu such that ~A} I'— _~TA; and the first two conditions above continue to hold if A,
is replaced by A, and o is replaced by —c.

Definition 3.2 (Modified connection). When acting on any spinor, v, define the modified
connection, V, by

Vb =Dy +iay,p + Ay and (84)
v,u@_b = D;ﬂﬂ 10”#% + waOA ( Nw) (85)

Definition 3.3 (n* and ¥;). In any material that follows, whenever there is a timelile coordi-
nate, t, whose level sets are spacelilke hypersurface, denoted ¥, I will choose a vielbein so that
n®, the future directed, unit normal to Y, is e’ = n# = §H°.

Definition 3.4 ((-,-)cx). Define an inner product on C by

(W X)ow = /E (V1) V!X + I My) dV. (6)

Proof. Tt has to be checked this really is a well-defined inner product.

(-, -)cee is manifestly conjugate symmetric and linear in the second argument. Since M is as-
sumed to be non-negative definite and I, J, ... are raised and lowered by 4, it is also immediate
that (¥,9)ce > 0. The only non-trivial parﬁ is checking that (1,1)ce = 0 only occurs for
1 = 0. I'll do this using a technique from [35].

Suppose (Y, ¥)ce = 0.

. Vi =0, or equivalently D¢ = —iary1) — A, by equation [86]

It will help to re-write the derivative in terms of the Levi-Civita connection of h, say D™,
Dy = e Optp — 3wy = €200 + e,/ 0ip — 3wosry* v — leKﬂJK@/)

From equation |1} one immediately sees that ¢* = —Ndt and e = ¢, h)I(dx + N'dt), where

eMTdat is a vielbein for h. Then, ey = %(at — N'0;) and ey = efh)laz = elh) because
ko (WI| rL  _1n7j 1
NN (ilff N i | = 9 : (87)
0 ¢ 0 e 0 &

(h)i
Dy = 61 "9 — swosrY° Y Y — Wiy K.
Since e; = e, ") has no 0y in it,

it = 3(gen lessex]) = glen lexsen) + glex e, e1]) (55)
= SO e, ) = (el e 7)) + (e, 6, ) (89)
— i), (90)

(h)i h
* Dyt = e 0 — Jwosry @/) LSy K = D — Swosr®y .
. Vi = 0 is equivalent to D[ w = 5w0JmJ70¢ iy — App.

Tt seems bizarre to carry around « instead of just setting its value to 1/2 throughout. I do this to explicitly
follow the effects of the cosmological constant; A = 0 would require o = 0. Furthermore, o = 1/2 only works
in the length scale convention I adopted in definition

12This would be trivial too if M were positive definite, but I am only assuming non-negative definiteness.
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The matrix multiplying 1 on the RHS doesn’t really matter, so I'll just denote it as A;.
1Ty is a scalar on a Riemannian manifold. Let |[1)||% = ¢T¢). Then, I get

|0, ([lel[5)] = IIW |0:(v1))| (91)
_ 1 (h) ()t
- D 92
o P W) (92)
1 (h) (h)
gm(\m @)'o|+ [p' D" w)]) (93)
< QHwHﬂLLﬁ ¢HS by the Cauchy — Schwartz inequality (94)
S
2‘ e )I.AﬂpH
S 95
Tols (85)
2 ‘el(-h)IAIHO. (96)

Unpacking the absolute value, this is equivalent to

™1 4,

‘0 < 8i(In([[¢]3)) <

€§h)IA[’ ‘0 . (97)

Let K = supp(¢). K is compact as ¢ € C°.

*. By the extreme value theorem, 3 a point, z; € ¥;, where ||1)||s is maximised.

Likewise, there also exists a point in K where ||e£h)IAI||0 is maximised.

Let C; = maxxengt(Hegh)IA]HO).

Let z¢ be a point on 0K N X;, where ) = 0.

Choose a curve, s, between x; and xq, with finite length, [(s). The length is determined by the
Riemannian metric on ;.

T ‘ 1 A T A
oo < [ ooy sa oo o
o xo xo

- =20(s)y/TiC < (][] (1)) — n(|[][3(x0)) < 2U(s)/TiCoh0. (99)
1 o) IVECHT < 1] 2 (ar) < (4] o) OV ECHT, (100)

Since ¥ goes to zero as one approaches xg, both extremes of the inequality are just zero.

I l15(z1) = 0.
But |[¢||%(x1) is maximised as 1, so it must be that |[¢||3 = 0 everywhere. But || - ||s is
positive definite, so this just implies that @ = 0. U

Definition 3.5 (G). Define a linear operator, G : C=° — L%, by G : ¢ — vV 1.

The modified Dirac operator, G, will be the main subject of this subsection. Note that 1 being
compactly supported means G(v) is definitely in L2

Lemma 3.6. If n® is a future directed, unit normal to a spacelike surface, ¥, then for any
antisymmetric tensor, M2,

na Dy M®* = Dy(n,M"?), (101)

where D is the induced covariant derivative on ;.
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Proof. Let H,, be the induced metric on X, i.e. Hop = gap + ngntp.

Observe that n, M is invariant under projection, i.e. because of M®’s antisymmetry,

H nyM® = 6 ny M + nngny M = ny M,

*. The induced covariant derivative acts as

Dy(ngM*) = H% H®, D, (n, M) (102)

= H De(n, M) (103)
= H D.(n,) M + Hno,D M" (104)
= Ky M" + 6 ng DM + nnyng, DM where K, = extrinsic curvature (105)
= naDyM" by M"'s antisymmetry, (106)

which is the claimed result. O

Lemma 3.7. For any ¢, x € C

C )

(b, X = / (V1)) AV = (G(), G0Nz (107)

Proof. Because ¥; is assumed to be non-compact and the elements of C'2° are compactly sup-
ported, I can freely integrate by parts without worrying about boundary terms.

But first, observe that because n, = —d,0 in my choice of vielbein, the integrand is
(V'Vi) 'y Vax = =Vi(¥) vy VJX 108
— —V,(0)'(y <’ D)V 109
= Vi()'V'x — v1< YV 110

Then, the integral is
(G(8), G = / (VY1) Vs (x)dV (114)
= [ (V1) VI @ ) av (115)

= / (Vi(@)'V X + 0, Dy (D)"Y px — ian, oy, "V ,x
p
+ nuﬁﬁyOA,T/yO’y“”prx)dV. (116)
By lemma Stokes’” theorem and compact support, I can re-write the second term as
[ D@ 9,007 = [ m D@ 09,00V = [ n G DT0d (1)
S A A
D, (n, by ,x)dV — /Z n,by"PD,(V,x)dV  (118)

3t

= —/ nuaw“”pr(Vpx)dV. (119)
p3M

13



Substituting back, I get

(G G00): = [ (Vi)Y = m, 7 DulT ) —fam, 37"V
t + n, 0y ALV ) AV (120)

= /2 (Vi()'V'x = n,0y"* D, D,x — ian, py***y,D,x — ngby*? Dy, (A,)x

t— nby*P A, Dyx — iom, by, vV px + by AlA PPV ) AV (121)

Now I just have to simplify this term by term.

1
YPD,D,x = 57’“’p[Dl,, D,|x by antisymmetry (122)
1
=3 R, AP0 X (123)
1 o v 14 v
= =B, (717 — 69, 0% + 679,87 ) x (124)
1 v . o
= gR’\"Vp (67[“ [05”})\] — 67[“5”[05P]M> x by the Bianchi identity (125)
3
= ZR/\J”" <7[‘“’U(5p])\ - 7[“5”05“/\> x by antisymmetry (126)
1 vV v, 14
= ZR)\Uup (7# U(sﬂ)\ + Y po&u)\ + rypﬂaé /\) X
1
= TRV, (18,00 8,8 0,67 (127)
1
= 7 (FBo™7 + R, 077 4 Ropy™ + Ry = R, — RY,) x (128)
1 Y . . :
= Z(O + 040+ Ry" — 2R"~,)x by Bianchi identity and R,, = R,,  (129)
__1 RW _ 1 R (130)
- 2 277 f)/l/X'
VP Dyx = —(n = 2)7" Dy x. (131)
WY N px = (0= 27"V, x (132)
= (n—2)v"D,x + ia(n — 2)v"y,x + (n — 2)y*" A, x (133)
=(n—2)v""D,x —ia(n —1)(n — 2)y"x + (n — 2)7"" A, x. (134)
YN o x = YD, x +iay" Py, x + P Apx (135)

="PD,x —ia(n —2)y"x + "7 A, x. (136)
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Substituting these expressions back into equation [I19] T get

(G, G = /

3¢

1 - 1 , .
(V;(w)TVIX + §n#w (R’“’ — 577“”]%) YX +ia(n — 2)n, " D, x

— 1, 0" Dy (Ay)X — 1,0y A, Dy x — ia(n — 2)n, 7" D,
—a?(n—1)(n — Q)nug_bfyﬂx —ia(n — 2)”#%'VWAVX
+ P Al D, x — e — 2)m, iy Ay x

+ nu%(’AhOv"”ﬂApx> dv (137)

= [ (o((5 (= )=t - 2= 10— 2

—ia(n = 29" A, —ia(n — 2)7° Aly %" + WOAWV"”’)AO X
+ <ia(n — 2" — AP A, —ia(n — 2)y" — ’yoAj;fyOfy“”p> Dux)
+ (VIWVIX> dv. (138)

In the unit conventions I'm working, & = 1/2 and A = —3(n — 1)(n — 2), so a®(n — 1)(n — 2)

is just —%A.

.. Applying the Einstein equationﬁ to implies

(G, GO = /

(n,ﬂ) ((47TT“”7V —y"?D,(A,) —ia(n — 2)y" A,
3¢

—ia(n — 2)7 ATy + P Al P ALY ¢

+ (P A, - v“ALvov“”p)Dyx> + (vfwvfx) dv. (139)

I've chosen a vielbein where n, = —d,0, so this last equation simplifies to

(GW), GO = /

2

(47 (= 4r7% 0 4977 D141) +in = 2174,
+ia(n —2)A — Ay A;)x

+ (YA + AT,fy”)DJX) + (V,WVIX> dav. (140)

Then, from definition [3.1] I immediately get

(G(¥),G(X)) 2 =/ (Vi)' V! x +¢™™x) dV (141)
it
and the RHS is exactly what I defined to be (1, x)cee. O

Definition 3.8 (H). Define H to be the (metric space) completion of C° under the metric
corresponding to (-,-)cse.

Lemma 3.9. G extends to a continuous (i.e. bounded) linear operator from H to L? such that

(W, x)n = (G(¥),G(x)) L2

I3This is one of only two places where the Einstein equation is used in this work.
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Proof. G is already defined for ¢ € C2°. The points in H\C® are equivalence classes of Cauchy
sequences.

Let {¢,}52, be a Cauchy sequence in C'° with limit in H\C°.

Observe that by lemma 57}, [|G(ta) — G(t4)l|12 = 1G (W — )2 = [[a —
S AGW,) 122, is a Cauchy sequence in L2

.. Since L? is complete, Ilim, o, G(¢,) € L%

Extend the definition of G to H\C° by defining G(limg_,00 ¥s) = limg_y00 G(¢y).

This definition is independent of my original choice of Cauchy sequence, {1,}°°,, because if
I'd chosen a different Cauchy sequence with the same “limit,” {x,}22,, then {G(¢.), G(x»)}
would be a Cauchy sequence in L? by a similar computation to above. Hence, they would have
the same limit in L2

Next, observe that this definition implies lemma extends to H. In particular, suppose

Y = limg00 ¥ and y = lim, o X, for Cauchy sequenced™] {14}, {xa}2y € C=°. Then,

Oz

(Y, x)n = lim blim (Ya, Xb)co> by the definition of (-, )% (142)
a—r00 b—r00
= ah_}r(r}o blLIEO(G(wa), G(xb))r2 by lemma (143)
= <lim G(¢,), lim G(Xb)> by (-,-)}2s continuity (144)
a—00 b—ro0 L2
= (G(¥),G(x))r2 by G's definition. (145)

As an immediate consequence, I get

1G22 = (11l (146)

which implies that G is a continuous/bounded linear operator. O
Theorem 3.10. G is a continuous, linear isomorphism between H and L2.

Proof. Continuity and linearity are already given by lemma [3.9]

Next suppose G(10) = 0. Then, by equation , [|¥]|% = 0 and thus ¢ = 0.
.. G is injective.

Sadly, surjectivity is far harder to prove.

Let 0 be an arbitrary element of L?.

Define Fy : H — C by

Fy() = (0, G(¢)) 2 (147)

Fy is manifestly linear. It is also continuous/bounded because the Cauchy-Schwarz inequality

and lemma B.9 imply [F3(¥)] = [(0, G(v)) 2| < [|01]2||G()|[2 = 101|214 -
.. By the Riesz representation theorem, Jp € H such that Fy(¢) = (¢, V).

S Fy(1) = (G(p), G(1)) 12 by lemma 3.9
By equation [147], if follows that

(O, G(¢))p2 =0V € H, where & =0 — G(yp). (148)

Let G be the formal adjoint to (. Then, equation can equivalently be formally written as

0= / YIGH(®)aV. (149)

HSGtrictly speaking, ¢ and x are equivalence classes of Cauchy sequences, but I'm going to abuse notation by
denoting them as if they were ordinary spinors themselves.
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Since v is an arbitrary element of H - in particular it can be chosen to be supported in an
arbitrarily small neighbourhood of any point of ; - equation implies that ® is a weak
solution to GT(®) = 0.

GT can be defined by formally integrating by partﬂ Explicitly,

0= /E (V' V() @ dv (150)
i V() v e dV (151)

. Vi) e dv (152)

- [ nv.preay (153)
_ /E D)@V + /2 (o 704 eV (154)

P is antisymmetric, so lemma applies, at least formally.

0= / n, 0 (=" D, (®) — ia(n — 1)y*® + 1Al 12 @) AV (155)
%y
/ ot ( IDy(®) + ia(n — 1)® — AW@) dv. (156)
L GTd = 41Dy (D) +ia(n — 1)® — Aly1®. (157)

In deﬁmtlon L I've assumedl EIA such that Aﬂ = —~TA;, A; decays at the same rate as
A, and v’ A is hermitian.

Analogously to the previous steps, I can define an M (with A, — A and @ - —a) and a
connection, V =D, —ioy, + Am to get

o =+'V,0 = G(®) and (158)

(G), G0z = / ()19 + Hi M)AV (159)

for ¢, x € C°.

First, suppose M is positive definite, where I can provide a much more self-contained proof.

Currently, equation [159| is a purely formal expression based on the weak solution property

above. However, based on elliptic regularity arguments, one can show ® € H (T will defer to

theorems 8.8, 7.3 an 6.4 of [26] for the details).

Having established this regularity for ®, some more concrete manipulations can be made.

For that, define a function, a,,, as follows.

Let d(-,-) : ¥;x%; — R be the metric function (in the sense of a metric space, not a Riemannian

metric) induced on ¥; by g.

Let a : R — R be any smooth function such that a(z) = 1 for z € (0,1) and a(x) = 0 for
€ (2,00).

Let g be an arbitrary point of ¥; and define a,, : £; — R by a,, : p — a(d(q,p)/m).

From 3J,’s assumed completeness and the Hopf-Rinow theorem, a,, € C2° and hence a,,1) € H.

15The integration by parts is only formal because ® € L? may not be continuously differentiable a priori.
16This is the only place in this work where this assumption will be used.
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Then, by equation
= (Glam?), P) 12 (160)
:/ am Y GT(®)dV (161)
/ 0! (Gla,®) ~+'Dila,)@) V. (162)

Since 1) is an arbitrary element of H > C, this can only be true if G(an®) = v/ Di(am)®.
For now, I'm assuming M is positive definite, so I can form a Hilbert space, H, in the same
way as H. Then,

|am® — an®||; = ||G(am®) — G(a,®)|| 2 by equation [15) (163)
= [V Dr(am — an)®|| 2 (164)
— 0 asn,m — o0 (165)

because @ € L? and the derivative, D;(a,, — a,), is (by construction) only non-zero in some
“annulus” whose “inner radius” closer and closer to dcX as n,m — oo.

" A{an®}_, is a Cauchy sequence in H.

The limit, lim,,, o a,, P € 7—7, must be P itsel .

Finally, I get

1@l = tim Jlan®ll; (160
~ lim (|G @)1 (167)
~ L |4 Dy(an)2]1 (168)
=0 by the same reasoning as equation [165] (169)

. ® =0 and thus 6 = G(y).

Smce ¢ was arbitrary, G must be surjective.

It remains to consider the case when M is not positive- deﬁnltl
The proof is a variation of some black magic from [35].

For this approach to the proof, let § be an arbitrary element of L2

From equation [159] if ¢ € C2°, then

GO = [ (Fr0)/Fs -+ 01 )V (170)
By construction,

GO = [ (70)/Vs -+ vi)av amn)

is finite Vi) € H.
VM/) Vi —2iayy + (AI — Ap)1, i.e. the difference in the connections is only o — —a and
A, — A

1"Note that in all these Sobolev type spaces, functions are only defined up to a re-definition on sets of measure
ZETO.

18The connections in section |5| fall in this category. This is true even in the analogous calculation for
asymptotically flat spacetimes. As explained in appendix A of [36], this issue was completely ignored by
[18, 19] and dealt with incorrectly by [26]. As far as I know, this work is the first to try fix this problem.
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Let ¢ be an arbitrary element of C'2°.

Let C°(rg) be the set of compactly supported smooth functions whose support is within
EN\{r > 3ro}.

Choose ry large enough so that ¢ € C2°(r() and so that the Fefferman-Graham coordinates are
valid (otherwise {r > 3r¢} would not be a meaningful set).

C2°(ro) is a subspace of H by inspection. Let H(rg) be the (metric space) completion of C2°(ry)
under the inner product of equation |86/ (the same inner product as H).

. H(ro) is a closed, Hilbert space subspace of H.

Now I can define a functional, S, : H(ro) — C by

So(w) = lIGWIE: — (6, 6 (172)

The effective “cut-off” at r = 3ry, V; & 61 differing only by @ — —a & A; — g] and the
assumptions on A; in definition ensure that Sy is finite.

Since G = G and (GN)' = G, the variational equation for minimising S, is G(G(1))) = 6.
The main technical tool applied by [35] is theorem 9.5 of [37], which states that for any finite,
weakly lower semicontinuous functional, f(z), defined on a reflexive Banach space, E, if

lim sup f(z) — oo, (173)

R0 12| p=R

then f(x) has a minimum point. In particular, 3 a weak solution to the variational equation.
By elliptic regularity, it’s then lifted to a strong solution with the same regularity as ¢.

In my case, E' = H(ro) and f = Sy.

S is finite by construction and every Hilbert space is reflexive. S is strictly convex by inspection
and then theorem 8.10 of [37] implies weak lower semicontinuity.

.. Only the limit superior property remains to check.

For that, construct a spinor, ¢ € C2°, as follows. Let

e"y for ro < r < 2rg
=40 forr <rg—eorr>2ry+e (174)

C* interpolation for all other r

for a constant spinor, 1y. Choose rg to be sufficiently large that this v is supported deep in
the asymptotic endﬂ. Also, choose € to be sufficiently small for the argument below.

Then, since 1) depends only on r by construction and it’s natural to separate out e! = dr in
Fefferman-Graham coordinates, for rqg < r < 2ry I get

1
Dpp = e oo — ZGTWWI’YW%- (175)
1
“G(Y) =€ (’yl —ia(n —1)I — waz’yl’y“l’ + ’yIAI) g and similarly (176)
~ . 1 , ~
G(y) =¢€" (’yl +ia(n —1)I — Zwu,,fylfy“ + 71A1> p. (177)

Because of the decay that I've assumed for A; and A; in definition , ~TA; and 77 A; are
completely dominated by the other terms in the G(v) and G(v) expressions.
Choose 1) so that (y! £ ia(n — 1)I) # 0 and then let iy — oco.

19 As a corollary, 1 is now well defined; “constant” is a frame dependent concept for spinors, but there is a
natural frame deep in the asymptotic end which covers the end.
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NG ez = 1] ere) — 00, but |G()|| 2 will also go off to infinity.
Applying the Cauchy-Schwartz inequality pointwise,

S0 2 GG ~ [ VEsar (178)

The 1st term is quadratic in ¢ but the 2nd term is effectively linear in 1, so S(v)) — oo toﬂ.
.. The limit superior condition is satisfied.

.3y € Hrg) such that G(CN} (1)) = ¢. In fact, by ¢’s compact support and elliptic regularity,
w(i) c CCOO .

Furthermore, by lemma G (¢y) € H because

1G W)l = IG(Go)llzz = ll]lz2 < oo. (179)

Denote é(z/z(b) as Wy.

In summary, I have shown that V¢ € C2°, 3V, € H such that G(¥y) = ¢.

Since C2° is dense in L?, 3 a Cauchy sequence, {0,,}°°_, C C°, which converges to 6 in L.
Given {0,,}>_,, construct the corresponding sequence, {Wy_}>_, € H.

{Wy, }>°_, € H is a Cauchy sequence because

[Wq,, — Yo, |lu = [|G(Ye,, — Vo,)|[12 = [|0m — On|[z2 — 0. (180)
Let U = lim,, .o, ¥y, € H. By theorem , G is bounded/continuous. Thus,

1G(T) = ]|,z = H lim G(¥p ) — QH - H lim 6, — 9‘ —0. (181)
m—o0 L2 m—o0 L2
LG =6.
Since 6 is an arbitrary element of L?, it follows that G is surjective. U

3.2 Main theorem

The main result of this work is theorem but T'll still need a few more definitions and
lemmas to set it up.

Definition 3.11 (Q(¢)). For a spinor, €, define Q(g) by

Q(e) = / n,Dy(E)dV, where (182)
P
EW = eyMPN e + c.c = EYMPV e — V ,(E)yH" Pe (183)
and n* 1s a future directed unit normal to constant t surfaces, ;.

Like @), E* also depends on . But, I'll suppress that dependence in situations where there is
no ambiguity.

Lemma 3.12. Q(¢) is conserved Ve.

Proof. Consider two values of t, say t; and t5. Then,

Qe)|t, — Q)]s :/ n,D,(E")dV —/ n,D,(E"")dV (184)
to
—/ / D,(D,E")dVdt by Stokes” theorem. (185)
t1 P

20T could even choose ry big enough so that the second term is just zero.
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The integrand is however zero because

1
D,(D,E"™) = §[D;n D,|E" as E"! is antisymmetric (186)
1 v 14
= 5(R o B+ R EYY) (187)
= — R, E" (188)
=0 as R,, = R,, but E* = —E""". (189)
Hence the value of Q(e) does not depend on ¢. O

Lemma 3.13. Choose a vielbein where n* = 6*° = €% and e* = dr. Then,
Q(e) = / E”dA and (190)
oSt
E% = etylAD e + Da(e) v Ayte — 2ia(n — 2)efyle + efylyAA e + eTATlA A e, (191)

Proof. Let [, denote the normal to constant r surfaces. Then,

Q(e) = /E 0, Dy (EY)dV (192)
= g [)V(nME"“)dV by lemma (193)
:/8 . l,n,E""dA by Stokes’ theorem (194)
— _/8 . E"™dA by my vielbein choice (195)
- / EMdA, (196)

et

which proves the first half of the lemma. Meanwhile, from equation [I183],

E% = &PV e — V,(8)7"Me (197)
= &Yy YV ae = Va(@ 'y e (198)
= Ty AV 46 — V() 7y (199)

= ely'y Dse +iaely'y e + ely'y A e
— Da(e)y'y%e —iaetyaytyde — et Al 41y (200)
= 'y AD e + Dy(e) 1y yte — 2ia(n — 2)elyle 4+ elyly A A e + eTAnyAfylg, (201)
which proves the second half of the lemma. U

Lemma evaluated the boundary expression for Q(e) when applying lemma [3.6l In the
next lemma, I'll find the bulk expression for the same quantity.

Lemma 3.14. Assuming the Einstein equation is satisfied,

Qe) = 2/ ((Vie)'V'e — (v'V 1)1y V e + eTMe) dV. (202)
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Proof. In accordance with equations and [I83] T'll begin by expanding D, E*.

D,E" = D, (y""*V j& — V ,(8)7"?¢) (203)
= D, (E)Y""*V je + v""° D, (V ,¢) — D, (V ,€)y"*Pe — V ,(E)y"** D e (204)
= V,(E)Y PV & + 108y, 7"V e — e’ ATV e + "1 D, (V ,¢)

— D, (V,e)y"e =V ,(e)7"V e +1aV (€)Y Pry,e + V , (E)y"P Aye (205)
=2V, ()Y e — ia(n — 2)ey"' Ve — Ey° AT A 1PV e + 87" D, (V ,€)
— D, (V,e)y"e —ia(n —2)V,(E)y"e + V,(E)y""* Aye (206)

=2V, (E)7""*V je — ia(n — 2)ey" D,e + o*(n — 2)ey"y,e — ia(n — 2)ay" A, e
- 8‘70A1T,70’y"“p D,e — iaé’yoAJL'yOfy”“pfypa - e_fyOAlT/yO’y”“pApe + &y D, D e
+iaey""P~y,D e + "D, (A,)e + ey A,Dye — D, D, (&)
+iaD, (E)y,n"e — D, (E)7° Ay e — 77D, (Af)y y"0e
—ia(n —2)D, ()Y e — a*(n — 2)Ey," e — ia(n — 2)ey Al Oy e

+ D, (&)Y Aye — i,y Aye + évoAlfyOfy””pAl,a (207)

Some of these terms can be simplified, as follows.

a?(n — 2)eay"™y,e = —a*(n — 1)(n — 2)&y"e. (208)
—iaEy ATy Py e = ia(n — 2)E7° Al Oy He. (209)
1 1
eV D,D,ye = 3 <R‘“’ — éRn’“’) gv,€ by the same steps as equation (130 (210)
iaey""~y,D, e = —ia(n — 2)ey"™" D e. (211)
1 1
—D,D,(&)y""Pe = 3 <R“” - §R77W) gy,e by taking equation [210[s conjugate.  (212)
iaD,(€)y,7""e = —ia(n — 2) D, (€)™ ¢. (213)
—a?(n — 2)ey,7"e = —a?(n — 1)(n — 2)éy e, (214)
—iagy, Y Aye = ia(n — 2)ey" A, e. (215)

Substituting these back up,

D, E"" =2V ,(E)y""*V ,¢ — ia(n — 2)Ey" Dye — a®(n — 1)(n — 2)eye — ia(n — 2)ey" A e
— a_’yoA,T/yO’y”“pra +ia(n — 2)570A,Tj’yofy”“€ — E_’yOA,T/yO’y”“pApE

1 1

+ 5 (R‘“’ — §Rn’“’) Eve —ia(n — 2)ey"*Dye + v D, (A,)e + EY"*PA,D,e
1 1

+ 3 (R‘“’ — §Rn’“’) gy,e —ia(n — 2)D,(&)y"He — D,,(é)fyOAL'yofy”“pg

— {::’}/ODV(AL)’}/O’VVW)ZS —ia(n —2)D, (&)Y e — a®*(n — 1)(n — 2)&y"e
—ia(n — 2)ey° ATy 9" e + D, (8)y"*P A e + ia(n — 2)Ey* Ae
+ E_PyOAleyofy”“pA,,E (216)

In the unit conventions I'm working, o = 1/2 and A = —4(n — 1)(n — 2), so a*(n — 1)(n — 2)
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is just —%A. Using that in conjunction with the Einstein equatio, I get
D, E"" = &(87T" 7, —ia(n — 2)y"™ A, + ia(n — 2)7 Al A047# — WOAZVOVV“’)AP

++"""D, A, — fyODZ,(AI))fyofy”’“’ —ia(n — Q)VOAIT,’yoﬁy’“’ +ia(n —2)y"" A,
P4, e+ 27, (10

+ 2(ian — 27 =P Al — ia(n — 27 + 1" A,) D,z

+ D, (8)(—ia(n — 27" = 7 ATy "y —ia(n — 2)y" + 4P A, e (217)

= &(87T"y, — 2ia(n — 2y A, — 2ia(n — 2)7 ATy — 270 AT A0 HP A,

++"""D,A, — VODV(AI,)VOWV“p)é + 2V, (E)y"HPV e

+E( A, = A Al ) Dye + Dy (2) (" Ay — 1 Al 'y )e. (218)

I'm working in a vielbein where n, = —,9. Hence,
n, D, E"" = —&(87T", — 2ia(n — 2)7" A, — 2ia(n — 2)7° Al 040 — QVOAL’yOfy”OpAP
+ ”y”OPD,,Ap — VODU(AL)WOVZ’OP)g — QV,,(E)’yl’Oprg
— (v A, =" Al ") Dye — D, (2) (" A, — 7 ° Al )e (219)
= M (8T %oy, + 2ia(n — 27 A + 2ia(n — 2)AlyT — 241417 4,
+~" DAy — Dr(AN)Y)e + 2V 1(e) 14V e
+el(y! Ay — ANy Dre — Di(e)! (77 Ay — Aly"he (220)

Then, by the definition of M and the v//A; = (y/7A;)! assumption - see definition [3.1]- this
expression reduces to

n,D, E"" = &' (87T %~yy, + 2ia(n — 2)y' Af + 2ia(n — NAN — 241417 A,

+ 4" DAy — Dr(v" Ay))e + 2V ()4 Ve +0 -0 (221)

= M (87T %0y, + 2ic(n — 27  A; 4 2ia(n — 2) AlyT — 241717 A, + 291 D A))e
+ 2V ()W je (222)
= 2:TMe + 2V (€)1 V je. (223)

The second term can be re-written as

Vi) vV e = Vi(e) (v 'y + 671V je = —(4'V 1)1/ Ve + V() V e, (224)
conuD,E" = 2(e'Me — (7' V1e)17/V e + V1 (e)IV'e), (225)
which is exactly the claimed integrand. U

Definition 3.15 (Background Killing spinor). Let ¢ denote a Killing spinor of the background
metric. In particular, ¢ is defined to satisfy

D&y, +iay,er =0, (226)
where Eu 1s the Levi-Clivita connection of the background metm'
g = d?“ ® d?” + e2r (f(o)mn + e_rf(l)mn —|— e_2rf(2)mn —|— RIS e—(n—Q)T‘f(n_Q)mn) dl‘m ® dIn (227)

Similarly, denote the vielbemﬁ associated to g as e and e,.

21This is one of only two places the Einstein equation is used in this work.

22As explained after equation |8, in asymptotically AdS spaces there is a subtlety with the powers of e™"
when n < 5. In these cases, I will always take g to include the higher order terms in
— (14 de )’ dt@dt+ (1 - te=2)” gguos.

23When the meaning is clear or the distinction is unimportant, I use the word “vielbein” to refer to both the
vielbein and the inverse vielbein.
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Not every choice of f(g)mn will lead to a background metric that admits a non-zero solution
to equation [226, However, the Witten-style proof - as far as I know - can only be applied to
background metrics that do admit a non-zero ¢;. I won’t attempt to classify such backgrounds
- interested readers may consult [38, 9] and references therein for this problem - however some
general remarks will be made in sections 4] as I consider various possibilities.

There is also a more subtle issue with background Killing spinors. ¢, may only be defined
in an open neighbourhood of the “boundary” at infinity or equation [226| may only have a so-
lution in such a region. This in itself is not a problem because equation [226| will only really be
required in an open neighbourhood of infinity, say M, and € can be extended to a spinor on all
of 3, by multiplying it with a smooth function that’s 1 near infinity but falls to zero within M.
The problem is that (M, g) may admit multiple spin structures and the spin structure which
admits a non-zero solution, e, may not be compatible with the spin structure on (M, g). This
is exactly the issue behind the AdS soliton [40, 41], which T'll discuss again in section [4 But
in short, like others working on similar problems [13], my proof will only work when the spin
structure admitting a non-zero ¢ on M is compatible with a spin structure on M.

Lemma 3.16. Ife eM Om is a vielbein for f, then

en :efré(f)m am ]- —(n— 1)rfn 1ym fp a +O —nr ’ 298

together with 0,, forms a vielbein for g.

Proof. The candidate vielbein satisfies

_ 1 _
glear,en) = e Zemel" g(a = 50" fu P10, + O™,
o 1 —(n—1)r _rsa —nr
(. 56 f(n—l)m"f s + O(e ) (229)
1
=e 27"65\’? eN ( (Om, On) — 56_(n Urf(n DmpSP9(Dq, On)
1 _
= 5 o F0(00,0) + 0 I00)) (230)
S\JJF ]\J/'F (fmn_ (n= 1Tfn lmpf fqn
1 ~
_ §ef(n71)rf(n_1)anr8fms + O<enr>> (231)

| m —| 77’7, ]' —(n—1)r r r
= es\]/;) 6%) (fmn - ée (n=1) f(n—l)mpqufqn

1 —(n—=1)r £rs £ —nr
- 56 (n=1) f(n—l)m“f fms + O(e )) (232)
—(n=1)r L _ n—1)r —nr
— eg\]; eN (fmn _ Ze— (=1 Fon—tym 26 (n—1) ftn—1)nm + O(e )) (233)
— &P (frum + O(e™™)) (234)
=nun +O0(e™), (235)
which is all that’s required because I'm leaving the O(e™"") part undetermined. i

Lemma 3.17. If ¢}, is O(e"/?) near 0%, then Ve, € L?.
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Proof. First note that to be in L?, an object must decay faster than O(e~("=27/2) because the
integration measure over ¥, is O(e(®=2").
Next, recall that given a vielbein, e H“/@/, the spin connection coefficients are defined as

Woon = 5 (9(ep, [ev, ep]) — glew, [ep, en]) + glep, [ev, eul)) - (236)

N —

In particular, when the one-form index is 1, corresponding to 7,

(9(61, [elm 6,/]) - g(elm [ew 61]) + g(ew [elﬂ 61])) (237)

(90, [ews ev]) = glew, lev, 0r]) + glew, [en, 011)) - (238)

Wpvl =

N =N =

Also, since ¢;, is a background Killing spinor, from equation and lemma |3.16} I get

Dyer = ey " Omer — ;LWWM“YW% (239)
= (e — €y )Omer — i(ww,M — W)Y e — lymes (240)

= (——e f(n l)npf "+ O( (ntl)r )) OmEr — %l(w;wM - ‘DWM)'Yng
—ilaymer by lemma [3.16 (241)
and Die, = Oyep — iwuylv””ek (242)
= _%l(w’“'l — W )Y R — layieg. (243)

Therefore, with the modified connection,

Ve = (=5 PR + 0 ) ) Bt = e~ Fuar) s
+ Aper and (244)
Viep = _i(w,uz/l — O )V er + Areg. (245)
In definition [3.1] 'm assuming || A;||o decays as O(e™("=D") near 9,, %, so Arey, = Oe(7=3/27),

Since I'm assuming n > 4, this is easily a faster decay than O(e~("=2)1/2),
. A[€k € L2.
Partial derivatives don’t change the order of exponentials, so I have

]' £ fin —(n— r
—5¢ " S O = O(e” 1), (246)

This is a quicker decay than Ajey, so —%e’mf(n,l)mpfp"ég{?mamgk € L? too.
For the terms with the connection coefficients, I’ll have to split into different cases for pu and
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v. First consider (u,v) = (N, P).

e = Bxe = 5 (9learslexerl) = glews ler,ear) + glep fex ear)
— 5 (@(eas [ 26]) — 3(ex [ep. en)) + 3(ep, [, en) (247
= %( g+ 0 ") (e + O(e™™), [en + O(e™™),ép + O(e™™)])
~ (54 09 (ex + Ole™), ep + O(e™), 0 + O™ )
+ (g+ )) (ep+O(e™),[en + O(e™™), en + O(e—”r)]))
; (@ [En 29)) — 3@, £, i) + 3@ . ) (249
— O(c™™) since g is O(e¥) and &y is O(e™). (249)

When the one-form index is 1, I can use [epr, eny] € span({0,,}) and 0, L span({0,,}) to get
rid of a term. Then, I similarly get

WMN1 — WyNL = ; (9(0r, [enr en]) — glem, len, 0r]) + glen, lear; Or]))

% (3(8:, [ear, en]) — §(ear [en, 0)]) + (e, [ear, 0)])) (250)
= % (0 — g(enr, len, 0r]) + glen, [ear, Or]))
— 50— Glens, lex,0,]) + glew, [ear, ) (251)
B 1
T2

(g+ O(e™ ™)) (ex + O(e™™), [ear + O(e™™),0,])
g

( )
+0(e” ")) (ey + O(e™™), [ear + O(e™™), &]))

_ % (G(en, [ea, B4) — (e, [ens 0) (252)

= O(e~(=0m), (253)

The other case is when one of p or v is 1. By the antisymmety in these two indices, I can
assume g = 1 and v = N. Then,

WINM — WINM = ;(9(6M7 [0r,en]) — 9(0r, [en, enm]) + glen, [Or, en)))
— 5(0(ear 00, e]) — 900, e, x]) + glew, 01, ea]) (254
= %(g(eM, [0, en]) + g(en, [0r, em]) — g(€nr, [0r, €N]) — g(en, [Or, En]))  (255)
= O(e~™=Y") by the same logic as above. (256)
The final case is
o~ B = 590 Brsear)) — 901, fear, ) + glear, [0,,0,)
— 5000, 10 ) = 9001 30,0 + 9(e, 0,0 (25)
:%<0—0+0)—%(0—0+0) (258)
0. (259)
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In summary, the connection coefficient difference terms are at least O(e~"~1") in their decay.
When combined with the assumed O(e’/?) growth of &, I get a O(e~("=3/2") decay, which is
again fast enough to get into L2.

. I can conclude that V;ei is a sum of terms that are in L. O

Corollary 3.17.1. v/V;¢;, € L2
Proof. The gamma matrices are O(1). O

Definition 3.18 (py). For future notational convenience, define

Fo)m (fopn -

Py = eM(O) € © f(n—l)mn + 5M0f(0) f(n—l)mn (260)
rmn (foy)m n

- 5M0f(0) f(nfl)mn + 5AM eA(0> n(o) f(nfl)mn- (261)

I've chosen the letter p for this quantity because it looks like a relativistic momentum vector
if one views f,—1)mn like an energy-momentum tensor. This is especially so given its Oth
component is the integrand of equation [81. Furthermore, this is also qualitatively p,,’s role in
the positive energy theorem proven immediately below. Finally, note that since f(’g)” fn—1)mn
is 0 in vacuum [33], pys is just e%oﬂmn’(’o) f(n—1)mn in that case.

Theorem 3.19 (Positive energy theorem). If the Einstein equation holds and 3 a non-zero ey,
with ey, being O(e"/?) near 05, then Je such that vV e = 0 and

n—1 —r = n—
Qe) = 5 © /a - pMEWMi?k\/L*f(O)d x
oo &t

e / ol (1M Aa + Al ) e Jet frod 2 (262)
Ooo 2t
= 2/ ((Vre)'Vie +eTMe) dV (263)
)3
> 0. (264)

Proof. By corollary [3.17.1] and theorem [3.10, 3¥ € H such that G(¥) = vV e.
Let e = e — U, so that

vV e =0. (265)

Let {1,}22, be a Cauchy sequence in C2° whose limit is .
Let e, = €, — 1,. Then, lim, ,, e, = €.
By lemma |3.13]

Q(ea) :/ E"(g,)dA. (266)
Do St
However, since 1), is compactly supported,
Qlea) = / B (2,)dA, (267)
Ooo St
which does not actually depend on a.
oolim Q(e,) = / E"(g4)dA. (268)
a—r o0 8002t
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I'll evaluate the RHS before finding the limit on the LHS.
From equation [201]

E%(e) = efy'9AD e + Da(e) Iy e — 2ia(n — 2)elyte + elyint A e + T AT e, (269)

Let (¢* f)mn denote the pullback of f,,, to the constant ¢ surface. Then, the measure, dA, is

dA = /det(t*(e? fp,,))da? - - - da" "z (270)
= oln=2r \/L*f(o) +O(e ) d" %z (271)
= e, J1* fgyd" 2z to leading order. (272)

This e 2" growth and the O(er/ 2) growth of g, means I only need to keep terms that decay
as O(e~ (=7 or slower in the matrices in E°!(gy).

Ay is assumed to decay as O(e™(™~Y7) in definition , so I just keep those terms as they are.
Consider the derivative terms next.

1
D e = e, Oper — ZWMVA/yuygk (273)
1 )
=(e,™ —€4")Omer — z_l(w“”A — Wya) Y er — layacy. (274)

From equations [249| and [256, T only need to keep the connection coefficient difference terms
when one of p or v is 1.
Likewise, from lemma [3.16} e, —&,™ is O(e™""), so I can ignore that term too.

o Dagp — _§(W1MA — D)y Y er — iayack. (275)
o Dagy — —%<W1MA — )V Y Y e — iaytyack (276)
= %(wlMA — o)V Y M e +ia(n — 2)ey. (277)
ELfylfyADAek — %(WlMA — leMA)sL’yl’yl’yA’yMek +ia(n — 2)5271% (278)
= _%(WlMA — wlMA)sbAyMsk +ia(n — 2)5271%. (279)
From equation [255]
ia — B = 2 (9len, 0 end) + e, Br,e4)) — 3(E [0 n]) — 3Ew, [0r, 7). (280)
This is symmetric in A and M. Hence,
- %(WIMA — Dira)efy Y e
= —i(g(eA, [0r, en]) + glenr, [0, eal) = (e, [0, en]) = (e, [0, ea))ejr*yMer  (281)
= —%(g(eA, [0r,e8]) + g(ep, [0, ea]) = §(€a, [0r, 28]) — §(eB, [0r, 2a]))eiy 7 e
— X g(en, 0 cal) + gleo, 01, c) — 3l [0, 0]) — 360, el e (282)
= 5 (glea, [0 es) — glen, 01, e))el e
- }1(9(6,4, [0r, ¢o]) + 9o, [0r, eal) — g(@a, [0r, &0]) — G(e0, [0, €a]))efy Y s (283)
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To go further, I'll need more concrete expressions for g(eus, [0y, en]) and g(éas, [0y, €n]).
Using lemma [3.16

g(ewm, [0r, en])

:g(e—feg?mam—%e—meg?m for-1ymp 700 + O(e” D7),

— o0, + e 0.0, + e e i f”@erO(e‘(”“)’")) (284)
= e e (910000 + 50 0000,

3 o 000 0.) + O )0(0))

+o e, (#) ( (00 30) = 3 S 91000 + O ™10lg) ) (255)

1 —(n—1)r ron
=€ (n=1) f(n—l)mpfp fnq

= e)mey ( Fng =€ fntymg + 2

N (n—1)r rrs —nr
+ Ee (n=1) f(n—l)qrf fms + O(e ))

1 —(n=1)r rpn £ —nr
+é§\]/.cf) a ( f)q) (fmq +e (n— 1)Tfn 1)ymq — 56 (n=1) f(nfl)mpfp fnq +O(e )) (286)

n- 1 —(n=1)r
= —NMN + 6%]? ( f)q)fmq 2 (n=1) 5\/1 f(n 1)ymn + O( ) (287)

Likewise,
g(enr, [0, ex]) = g (e*’”é}’? O, —e "0, +e*7“ar(é§f>”an)> (288)
— e o+ €00, (D) o (289)
= —iarw + 50, (E0") Foun. (290)
(291)

—(= = n—1 n— —nr
. glear. 0, en]) = 9@ [0r en]) = e e e fru sy + O™

Substituting this back into equation 283] to leading order I get

1
- §(W1MA - wlMA)EL’YA’YM&c

= §5AB(g(€A, [8T, 63]) - Q(éA, [8ru éB]))C‘Lgk
1

— 7 (9(ea, [0y col) + gleo, [0r, ea]) — g(ea, [0, €0]) — gle0, [0, e4)))el A ey, (292)
e L N P T LoD e DM e e (293)
_n ; 1e (n— 1)r77MN€SV[) _%)nf(n—l)mn@tEk n n— 1ef(nil)rééf)mééf)nf(n—1)mn€LEk

- "T—le_(n_%g " fin1ymne i v e (204)
=z ; 16_(n_1)rfmnf(n—1)mn£,t:6k + nT_le‘("_l)rééf)mééf)”f(n_l)mnglgk

”T_le—< DrgDmeIn 0 (295)
_n ; 16—(n—1)rfmnf(n_1)mn5£€k 1 nT_le_(n_l)rég\?mééf)nf(n—1)mn€_wM€k. (206)
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The e~ factor and e, = O(e’/?) mean I only need everything else to O(1); anything higher
order will integrate to zero in equation [268]

o fn—-1ymn — f(’g)” J(n—1)ymn and hence by definition m,

1 n—1
—§< 1MA — LTJlMA>€};’)/A’}/M€k = Te_(n_l)TpMéTk’}/Méfk -+ O(e_(n_l)r). (297)
Substituting back into equation then gives
el yty & Mer +ia(n — 2)elr ey (298)

2 Daer) YAy e, — %e’("’l)’"pMék”yMek +ia(n — 2)8271@ too. (299)

Substituting these two expressions into equation [269] implies

n — 1
E"(gp) — 5 ~= Dy gy Mer + 5kfy AAjer, + ELATA’yAfyl&?k (300)

The lower order terms I've omitted integrate to zero under |, P dA, so equation becomes

a— 00 2

n—1 _, ~ e
=5 ¢ / pueiy ewy /v froy A"
90T
+en2r / el (1 A+ Al ) ey e fiopd (302)
Do

It’s now time to evaluate the bulk expression for lim, ;. Q(&,).
First note that by lemma |3.14}

Qe =0 =2 | (Tiler =0V er =) = (3'Vialer = ) Viler = 0

p

n—1
lim Q(eq) = / ( e Uy gy Mey + el v Aser + 8;11427/471@) dA  (301)
Ooo 2t

+ (e =0 M(e — X)) dV. (303)

Hence, by equation [86] definition definition lemma and corollary [3.17.1],
1
5(Qe) = Qea)) = 19115, — [[Yall3 = IG(P)[[72 + |G (Wa)ll72 + (G(¥ = va), ' Vier) 12

2
b (Ve GLU — ) g — / (V1 (T — 1))V (£)dV

P

V() V(U — ap,)dV — / (U — 1py) Mgy, dV
¢

¢
— / eIM(T — ¢,) dV. (304)
3¢

Inner products are continuous. By lemma [3.9] so is G.
. I immediately get

lim [[all3 = 1915, lm (|Gl = G|, lim (G(¥ —14,).7 Vg = 0

and  lim (V'V ek, G(¥ — 1)) 2 = 0. (305)
. lim %(Q(@ ~ Q) = lim ( - / (Vi(¥ = ¢0))' V! (e)dV = | V() V(T = g)dV
" a—oo a—00 %, P
— / (U — ho) Mep dV — [ el M(W — th,) dv>. (306)
¥y 3t
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Since the inner product on H is (¢, x)3 = fEt (Vi) 'Vix + ¢T™Mx) dV (with limits of Cauchy
sequences taken appropriately when ¢ or x is in H\C2°) and M is assumed to be non-negative
definite,

/E (Vi) VI () dV < ([l < oo (307)

-V € L? and ¢ — V) is a continuous (i.e. bounded) linear operator.

Solim [ (V0 = 9)) V (e)dV = lim (Vi (T = ,), Vi) e (308)
a—r 00 Et a—r o0

(@ (- ) ),

=0 (310)

and likewise for [;, V(e;)"V (¥ —1h,)dV. That leaves

lim 2(Q() — Q(e,)) = lim ( - /Zt(\p — 1hy) My, dV — /Z elM(T — o) dV). (311)

a—o0 2 a—00

Because I'm assuming M is non-negative definite, ||M]||o decays faster than O(e=™~Y") near
050 and g grows at O(e™/?) near 0%,

/EezMsde‘:/E 52M5kdl/§/ eler| M| dV < oo. (312)

pM

 en/IM[o € L2

Likewise, (U — 1,)+/||M||o € L? because
/Z (U = 90a) (¥ = ¢a) Mo dV < /E (U = 9) 'M(P = 0,)dV < [0 — [} < 00, (313)

Hence, effectively by the Cauchy-Schwartz inequality applied pointwise and the continuity of
inner products,

lim
a—r o0

JREEaL dv' < T [[(% — o) /Mo llzellee/ M ll2 - (314)
— || Jim (9 = ) /M| | llews/TMITollz2 (315)

—0. (316)

colim [ (0 = 4h,)Me, dV =0 (317)

a— 00 Et

Analogously, [ el M(T — 1b,) dV = 0 too.
The net result is that

lim Q(ea) = Q(e) (318)

=2 /Z ((Vie)'Vie — (v'V1e)'y/V e + e'Me) AV by lemma [3.14 (319)

= 2/2 ((Vre)'V'e + e'Me) dV by equation [265, (320)

Substituting this into equation [302| completes the proof. O
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Corollary 3.19.1.
eT/ pMék”yMek t* foo) d" 2y (321)
ERSON

1 a conserved quantity.
Proof. Choose A, = 0. Then, the result follows immediately from lemma 4

Corollary 3.19.2. If equality holds in theorem theﬁ 3 a non-zero spinor, €, such that
V[é? =0.

The example A,s I'll be considering in the rest of this work are ones such that Ve would be the
gravitino transformation in some theory of supergravity. Then, V,e = 0 is the Killing spinor
condition. The existence of a non-zero solution, &, would imply (M, g) is a supersymmetric
solution, i.e. some level of rigid supersymmetry is preserved by the spacetime. Corollary
almost implies that only a supersymmetric solution can achieve equality in theorem [3.19]

4 Examples with A4, =0

Throughout this section, A, is set to zero.

Lemma 4.1. The assumptions of definition |3.1] are satisfied if the energy-momentum tensor,
Ty, satisfies the dominant energy condition and T decays faster than O(e™ ™Y near 0, %,.

Proof. Since A, = 0 in this section, all the conditions about A; in definition are trivially
satisfied (with A, = 0 too).

Only the conditions about M remain.

Definition implies M = 47T% gy, = 47 (T + T ~yv;) when A4, = 0.

The eigenvalues of T% v, ar +4/TTY | so M being non-negative definite is equivalent to
T% > \/TYTY, .

The dominant energy condition says —7% V? is future directed and causal for any future di-
rected, causal vector, V.

Choose VH# = 6+,

o —=T" = T is future directed and causal.

2 T% >0and 0> 1, THTY <« (T%)? > T%TY, which is the condition found above for
M to be non-negative definite.

Finally, since the gamma matrices are O(1), the assumed condition on T%%’s decay is exactly
the condition in definition (3.1 about ||M]|y’s decay. O

Corollary 4.1.1. Theorem reduces to

n—1
Q(g) = 9 eT/8 . ngk’YMgk\/ L*f(o) d" 2z (322)

=2 / ((V5e) Ve + dnT%elyyvy,e) AV (323)
pI

> () (324)

24Note that lemma implies the equality hold V¢ if it holds for any one value of .
25This can be seen by supposing 7% voyrv = Av. Then, \%v = TOITOIU by the Clifford algebra. Both
+4/TTTY% must be eigenvalues because if v is in one eigenspace, then yov is in the other eigenspace.
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The main task for the remainder of this section is to give physical meaning to the boundary
term, ”T_le’r faoozt pMs’wMekw/L*f(o) d" 2z, for different boundary geometries, fio). In [28],
and to a lesser extent in [I4], it’s effectively argued that the entirety of

ne™ [ s PuEryMery/1* fo) d"?x should be interpreted as an energy. This interpretation
is supported by the fact that e, being a background Killing spinor automatically makes
exyter a Killing vector for g. However, as I'll show, often a bit more can be said and
”T_le*" fBooZt Py ern /1* fy d" 22 can be concretely connected to the energy I defined in
section 2]

4.1 Toroidal boundary

Although asymptotically AdS spacetimes are more familiar, €5 takes a simpler form in the case
of the toroidal boundary, i.e. R x T"~2 with the metric,

fioy = —dt @ dt + 505 dI* ® d6° = 1, dz™ @ da”. 325
0 8

Hence, I will present applications in this class first. This choice of boundary metric is motivated
by the Kottler metrics,

dR®dR

_ 2
g=—(k+R)dt@dt+ ———;

+ R%g™), (326)

where &k = 1,0, —1, ¢/ is the metric on the unit (n — 2)—sphere, ¢® is the metric on a
unit (n — 2)—torus and g~ is the metric on a compact identification of (n — 2)—dimensional
hyperbolic space, H" 2. The Kottler metrics are the simplest generalisation of AdS (the k = 1
case is AdS itself) and in Fefferman-Graham coordinates, they are [32]

k 2 k 2
g=dr@dr+e” (— (1 + Ze%) dt ® dt + (1 — Ze”) g(k)) : (327)

Hence, this subsection studies the £k = 0 case. k = 1, i.e. AdS, will be studied in section
. No immediate progress can be made in the ¥ = —1 case because compactifying H"~2 by
identification is incompatible with retaining any of H"?’s Killing spinors. Indeed, negative
energy solutions are possible in spacetimes with compact hyperbolic cross-sections [42], albeit
it isn’t known whether the energy is unbounded below.

Lemma 4.2. The most general Killing spinor for the f(o) in equation S
ep = €2 P ey, (328)
where P = %(I +iy') and g¢ is an arbitrary constant spinor.
Proof. As discussed above, the background metric is
g =dr ®@dr +e*ny,,dz™ ® dz". (329)

. The natural vielbein is ¢ = e"dt, e! = dr and e = e"64, d6°.
To solve the Killing spinor equation, I need to first find the spin connection coefficients. I'll do
so by the structure equation, de” = —w*, A e”.

de® = e"dr Adt =e' A€, de! =0 and de? = e"6% dr A dO* = e' Al (330)
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Hence, by inspection, the non-zero connection 1-forms are (up to antisymmetries) are

wor = —€” and wyy = e (331)
<= wpi0 = —1 and wy14 = 1 (no sum). (332)

The background Killing spinor equation - equation [226] - says

1 V i
0=0uer — Z—Leu,“wyp,ﬂ Per, + 56“/”’%@ (333)
and it now reduces to
e" 1e”
0= 0Ol + 5’7071% — 77(]@, (334)
0= d,ep + %#gk and (335)
e’ A1 1ie” A
0=0,6, — E(SAQ’Y YER + ?5/40{’)/ Ek- (336)

Equation immediately implies g, = e’/ 2¢, for some spinor, &, that doesn’t depend on r.
Split € up into 7! eigenspaces, i.e. € = P e_ + P;"e, for some e, that also don’t depend on 7.
cep=e2P e +e/?Pfe,.

Substituting this into equation 336 implies

) ) ie3r/2 " ier/2 "
0=e"20,P e_ +e"?0,Pfte, — 5 SaaV Pre_ + 5 Saay Ples
ie3r/2 ier/Q
+— SaaY Pl e_ + T(SAQWAP;“EJF (337)
= 20, Ple_ 4 e 20, Pley + i€ 2547 Py e, (338)
— 2P (Dae_ + 1040y el) +e72P Ope . (339)
Applying P to this equation yields 9,P; e, = 0 and 9, P e_ = —i6407 P/ e .
The first of these equations implies P, e, is independent of #*. Consequently, the 2nd equation
integrates to P; e = —i#%0 4,y P{'e + P; &, for some ¢, independent of 7 and 6.

0% is an angle around a circle though; it is periodic. Spinors must be periodic or antiperiodic
around a circle. —i0%6 4,74 P;" e, is neither unless P;te, = 0.

. T'm left with e, = e’/2P[ &y, where ¢ can only depend on .

It remains to satisfy equation [334], which now says

ieSr/Z 0 ieSr/Z
Y Pl g0 —

0=e"2P Oieo + VP ey = €2 P e, (340)

Hence, I'm left with ¢;, = ¢’/2P[ ¢, for just a constant spinor, . O

Corollary 4.2.1. Theorem only applies if (M, g) admits a spin structure where spinors
are periodic in the torus’ circle directions in an open neighbourhood of 0., say M.

A circle admits two spin structures - one where spinors are periodic and one where spinors
are anti-periodic. In T" 2, this applies to each of the n — 2 circles. Of all these different spin
structures, equation [328| requires the one which is periodic in all n — 2 circles. However, it’s
possible that spin structure, while fine on (M, g), does not extend to all of (M, g). Theorem
[3.19 would therefore not apply in such a scenario. Indeed this is exactly the situation for the
AdS soliton [40, 41] - see [43] for yet more exotic constructions. To make progress, I must
henceforth restrict attention - just as the authors of [I3] did - to manifolds where the spin
structure required by equation does extend to all of (M, g).
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Theorem 4.3 (Toroidal positve energy theorem). If the Einstein equation holds, Ty, satisfies
the dominant energy condition, T°* decays faster than O(e= V") near 0,3, and (M, g)’s spin
structure is compatible with having periodic spinors near O, then

E > \/JaJA, (341)

where J4 = % faooEt pad™20.

Proof. The proof is simply a matter of evaluating corollary for the 5 in equation [328].
In particular, \/¢* fo) = 1 and

pueyMex = puein®yMer (342)
= el (pol + pay’v*)ex (343)
= e’"e(T)Pf (pol +pA’yOfyA)Pfgo. (344)

The spinors and matrices in this equation are all constants, so can be freely moved in and out
of integrals. Thus, corollary says

0< Q) (345)
—1 —1
= &b P (n_/ pod" 207+ 1= pAd"26707A> Pl e (346)
2 Joos, 2 Jous
= 8mel Py (EI+ JA'YOWA) P ey by equation (347)

The eigenvalues of the matrix, J 4774, ar +1/J4J4, so ET + J4+°7* has eigenvalues,

E + \/JAJ4

Choose g¢ to be in intersection of E—+/J4J4 eigenspace with the interection of the i eigenspace
of v! (so that P, gy = ). Then, equation can only hold if £ > /JaJ4. O

The quantity, 2=t [ os, Pad" 20, has been suggestively denoted J4, hinting angular momen-
tum. Indeed, a quantity analogous to J4 has been interpreted as an angular momentum vector
in [13]. It is natural to make the same interpretation here because the boundary topology is
R x T"2; each component of J4 describes the rotation around one of the n — 2 circles com-

prising T" 2. However, note that angular momentum will look quite different in section
because of the different boundary topology there.

4.2 Asymptotically AdS

In this subsection, I'll apply theorem to the example of greatest physical interest, namely
A, =0and fg) = —dt ® dt + ggn-2. By definition [2.3} this corresponds to asymptotically AdS
spacetimes; the background metric is

1,02 1,0\
J= gaas = dr @ dr + e*" (— (1 + Ze_%) dt ® dt + (1 - Ze‘w) gsn2> (348)

The open neighbourhood of the “boundary” at infinity has only one spin structure now, so,
unlike the toroidal case, the issues about compatibility raised in corollary do not arise.

26The eigenvalues can be found by noting that if J4v%v4v = Av, then A2v = JaJpy°947°vBv = J4J% by
the Clifford algebra. Both A = 1/J4J4 and A = —/J4J4 must occur because if v is in one eigenspace, then
~% is in the other eigenspace.
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In Fefferman-Graham coordinates, AdS is given by equation [9] The Killing spinor - in the
natural vielbien associated to those coordinates - is calculated in [14]. However, the Fefferman-
Graham coordinates - especially when ggn-2 is written in the nested sines form of [14] - are very
asymmetrical. The &,v"¢;, in theorem will be practically impossible to calculate in this
frame. Luckily for me, &,v* ¢}, is a Lorentz vector. Hence, I can choose a more convenient frame,
e, = A, (r)e,, calculate the Killing spinor, &, in the |, frame and then determine ;" e by
Exyier = A, (2)67 €}, The most convenient e/, results from viewing AdS as R x H"™' with
the metric,

4
m&]]diﬂl (059 de, (349)

where p = v/x;2! and 2! are Cartesian coordinate in the unit disk (centred at the origin).
H"~! is thus being represented by the Poincaré disk/ball in these coordinates.

1+ 0%\’
gAdS:—(—p2> dt ® dt +
1—p

Lemma 4.4. The area radius function, R, is R = 1—3% and the Fefferman-Graham coordinate

isT=In(R+v1+ R?) —1In(2).

Proof. Writing the 6;;dz! ® dz’ in equation in spherical coordinates,

1+ p%\? 4 4p?
=— dt®@dt + ——=dp®dp + ———=ggn—2. 350
JAds (1—p2) ® +(1—p2)2 P& P+(1_p2)295 2 (350)
By inspection, the area-radius function is R = %.
In terms of R, gaqs takes the standard form,
dR®dR
gaas = —(1 + RHdt @ dt + Cr®cn + R%*ggn—2, because (351)
1+ R?
4p* 1+ p? 2
1+ R*=1 = d 352
PRSI (1—p2 an (352)
dR®dAR  [(1—-p*\* [2(1 = p®) —2p(—2p)\° 4dp®d
®dR _ P (1 —p*) —2p(—=2p) dp® dp pedp (353)
1+ R 1+ p? (1—p?)? (1—p?)?

The natural way to find the Fefferman-Graham coordinate is thus to choose r to depend only

on R and fix it so that dr @ dr = dfﬁgf.

A (354)
"dR V1+ R?

The RHS can be integrated (e.g. by computer algebra software) to get
r=+(R+VI+R)+e (355)

I need the boundary at infinity to be r — oo, so I must choose the + in +.
The choice of ¢ = —In(2) is just to ensure the dt®@dt in f(o) has coefficient —1; for other choices
it would be —2e°. U

Corollary 4.4.1. The boundary at infinity, r — oo, corresponds to p — 1.

I

2"In particular, the I in 2 is not a vielbein index. However, I will still lower that index by &7, just as if it

were a vielbein index.
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In the coordinates of equation [349] the natural choice of vielbein is

1—p?

1—p?
0, d or. 356
5 , and €} = 1 (356)

2

!
€y =

Meanwhile the coordinates of equation are naturally viewed in vielbein,

- T

e e
= ———5:0, e =0, and ey = ——-e}"0, 357
€ =7 n ie_% N and eq = 7— ie_%eA (357)
where e is a vielbein for gsn— and 6% are local coordinates for S™~2.
Lemma 4.5. The vielbeins, e, and € s are related by
00
ey =€, and €)= Zre; + i el )AeA, (358)

where &' are unit vectors, i.e. x' = pi'. Hence, the local Lorentz transformation relating e,

and ¢, i.e. e, = N (x)e,, is given by
A SH H s H 90* (s)A
0= OandAI:(leI—i-éApala . (359)

Proof. The proof is essentially just applying lemma [£.4]
ey = €9 immediately because all I'm doing is re-writing r in terms of p. For ¢/,

1 — 2
e =", (360)

2
1—p? 0 1— p? o6
S A S S

. d, 361
2 Ox! 2 Ox! (361)
1 - p 87“ 1 - p2 a@ae(s)Ae(s)

2 a1 * 2 Ogl @ 4 (362)
_1—p*or 1—p? 06~ |,
= —5 710 T 5 gt el Re 4. (363)
For the 2nd term,
1—p? 1—p% 2p
= = . 4
5 R 2 1 P (364)

Meanwhile, for the 1st term,

AU e <1n(3+m) ~In(2)) (365)
R

2 Oxl 2 Oxl

1—p? OR
-7 (1 + ) ; (366)
2 R+\/1+R2 V14 R?) Oz
1—p? 0 2
S P (367)
2 \/1+R28x1 1—p?
1— 1 2(1 — p?) —2p(—2p) O
_ 2p ( (p )_p2)f;( p) 8;)] (368)
Vi+ e
1—p21—p?2(1+p?) 2!
_1=p1=p 214 p7) 2 (369)
2 1+p(1=p)2p
=2l (370)
Substituting these expressions back into equation [363| gives the claimed result. U
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Lemma 4.6. In the frame of equation[350,

1 .
(I —izy!) "2, (371)
V1—=p?

1s a background Killing spinor, for any constant spinor, £q.

g =

Proof. To check whether equation 226 holds, I first need to find the spin connection coefficients.

1
deozd(1+p ) (372)
2p(1 — — (14 p*)(—2
_ 2p(1=p?) (2+2p)( P)ap ndt (373)
(1—p%)
4
= ———ada’ Adt 374
(1 —p2)2$1 z (374)
2 I A0
= xre' Ne . 375
T2 (375)
2 4p
del =d ( dxl) = " _dpAda’ 376
=) T = )
4p  wyl—p* ; 1—p*,
= — A 377
T—p22p 2 "2 ° (377)
=xye’ Nel. (378)
wh A e’ = —de* by the structure equations, s Wor = —#meo and wy; = x el — xre’.
CLWoro = —#x; and wyry; = xy for J # I and no sum on [.
Equation [226] for background Killing spinors, is
, 1 i
0= 6“# (‘3,,5k — Zwup,u'yypgk + 57”6k. (379)
First try = 0. Then,
, 1 i
et ey, — Zwywvy"ék + §7u5k (380)
1—p? 1 i
= T p2 —— 0 + 1T psz'YO’Yng — 5’705]“ (381)
= - ! ( —ixpy ) 'yoe” H2e0 + ! xfyofy‘]; (I — il’[’}/l) e”ot/Zeo
1 + P2 \/7 2 1+ p? 1—p?
1 ) .
— é'y —— (I —izy") 2, (382)
I—p
1
= i(1—p")°" = (1= p*)ey*y + 207°y" = 21z 509°97H
—i(l+p)" = (1 + pz)awovf) "2, (383)
1
— i1_20_1_2x01+2x01+2i20
2(1+p2>ﬂ(( p)7 ( p)177 Y Py
—i(14+p*)" — (1 + p2)x17071) 2 (384)
=0, as required. (385)

28 As indices are raised and lowered by J, the matching of upstairs and downstairs index position need not be
too strict. I also won’t list zero components or those determined by antisymmetries.
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Next, consider p = I. The derivative term is

1 .
a[€k = a] (ﬁ (I — i.CL’J’}/J) el’YOt/Qé‘O) (386)
P
o 1 LL'] . J 1 i’yot/2
- (- g =) = S ) (a0
1 : J 2\ I ) iny0t/2
= m(xll —izgzyy’ —i(1 — p%)y )eW £0. (388)
Then, the actual expression to be checked is
, 1 i
6#“ @u’gk - Zwup,u'yypgk + 57}15.% (389)
1—p? 1 . J - I\ Ain0t/2
= TEVOE (x;]—lexjy —1i(1—=p7)y" e g
]_ IJ ]_ . K . Ot i ]_ . iA0
— - —— ([ —ix V2 4 oAt ———— (I — iz y”) 7% 390
2]7 ﬂ( Kf)/) 0 2/7 1_p2( J’y) 0 ( )
1 . . .
= —— (III —izgxy” —i(1 = )y — " +iwgay AN
2¢/1 = p?
+in! + m’vj) e 2y (391)
1
= (x]] —izrz vy’ +ip*y =z (v 4 61T
2¢/1 = p?
+ in:L‘K (,VIJK _ 5KJ,YI + é‘KI,yJ) + -TJ’}/I’}/J) eifyot/QEO (392)
=0 too. (393)

Hence, the postulated ¢}, is indeed a background Killing spinor in the frame of equation m O

Definition 4.7 (Momentum, momentum, momentum!). Define the linear momentum, angular
momentum and centre of mass momentum as

n—1 ~ n—1
Pp=— mn g 2rd(ggn) = ?1d(ggn-2), 394
T /600& fo) fn-1ymnZ1d(gsn—2) o /awEtpoxf (gsn—2) (394)
n—1 00« 00~
Jrg = ool Tr=— — i — d(ggn- d 395
IJ 167 /aoozt f( 1)0 (xfaxJ - x‘]c‘?mf p:1) (gsn—2) an (395)
n—1 09«
K; = 100 —— 67, — &%) d(ggn—2 396
T fn—=1)0 9 p:1( [ —&72;) d(ggn-2) (396)

respectively. In these expressions, 0% denote local coordinates on S"~2, 2! denote unit vector
Cartesian coordinates and p = \/xx?l, i.e. 2! = pil.

These definitions are based off the discussion in [I3]. The exact form is motivated by the terms
that appear in the next theorem. However, some heuristics can be discussed now. It was shown
in [10] that the Riemannian analogue of (E, Pr) transforms as a Lorentz vector when one chooses
a different conformal class representative for the boundary metric, f). Hence, P; naturally
behaves like linear momentum. Next, observe that the vector, (z 1% lp=1—2 J% | p)=1)04 equals
105 — ¥ ;0r, which is the generator of rotations. Hence, it’s natural to expect what I've defined
as Jrj above to behave like angular momentum. I will do an example illustrating this in section
. Likewise, 27|,y (67, — &72;) 00 = (07; — #7%;) 8, can be seen a generator of boosts,
suggesting the K; above should be interpreted as a centre of mass momentum.
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Theorem 4.8 (Asymptotically AdS positive energy theorem). If the Finstein equation holds,
T,y satisfies the dominant energy condition and T decays faster than O(e™""V") near 0%,
then

EI—iPy + %J;ﬂ%” Ty g (397)
1 a non-negative definite matric.

Proof. The proof is mostly a matter of evaluating corollary [£.1.1] for asymptotically AdS spaces.
As explained at the start of section , 'l find &}y*e), and use that to find ppepyMe.
When p =0,

g0, = 5;;8;{ (398)
1 . .
: 282;6_17%/2(1 — iz (I — iz y7)e" %, by lemma (399)
—p
1 - .
=7 2556_17%/2([ — 2ixy! — a:IxfyI’yJ)eWOt/250 (400)
—p
1 ) .
=1 e ele 2 (1 + pP)I — iz y")e ey, (401)

I only need this expression near d,,%;, where r — co. By lemma [£.4] that means p — 1 and
—1_1p2 = % — %e’“.

/0 r_t —iy0t/2

CLERY € — €TEge (I — izy)e" %, (402)

Hence, using lemma [4.5]

n—1 _ _ _
5 / poeryery/* flod" 2
Foo Xt
n—1 —r 0 =/t * n—2
=5 . PN & e/ fiopd" T (403)
00 &t

-1
. 5 e_r/8 § PopY e/t froyd" (404)
oo £t
-1 : .
_ n ; / poggeflyﬂt/2<[ o ii’["}/l)ewot/2€0 L*f(o)d"dat (405)
Do Tt
T 7i'yot/2n —1 % dn72 o A * dn72 I in0t/2 406
= &g€ 9 Por/ L f(o) Tr—1 Polry/t* fo) Ty e €0 (406)
800& 8002t
= 8rele 2(EI — iPy")e"?¢, by definition . (407)
Likewise, when py = I,
giv'e = el el (408)
1 , .
=1 pg%e_wot/ (1= ey VT = iy ™) e (409)
1 —1 . . i
12 ele ™ 2(° — iz sy 90) (v — imgy A ) e (410)
- 1— p2 52)6 70t/2(7071 — 1xJ’VJ7071 - mJ’YO’YI’YJ - xeK’VJ’YOWIWK)e 7025/2&?0 (411)
1 i . i
_ — ng(f)e 7%2(7071 _ 21$J,YO,YIJ _ 2xIxJ707J + p27071>e wot/2€0 (412)
1 , ) :
=1 pg%e_wot/ 2((14 py" = 207" = 2227 97 )M e (413)
N erege—iﬂ/ot/Q(,yO,yI _ izﬁjvovu _ fIfJVOVJ)eiVOt/Qﬁo' (414)
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For the integral, note that ps = e, Uo)m,, f(n Dmn- With the choice of f(g) here, Ny = 50

Uom _ o )aéma, meaning py = 654) ftn—1)a0- Hence, using lemma again,

n—1 —r - n—
5 ¢ / pacyeny /v foyd" 2
B0 St
_ n—1 -r AA = ! * dn—2
= e pal” & e/t fo) x (415)
2 oS

and e,

n — 1 —r s)a 885 s n—
= e / 654) fn-1)0a5 7 (B) g e,  fioyd" 2 (416)
2 Ooo Xt x| _
n—1 / f 00~
= n—1)0a 3 7
2 9o Tt ( ) 8x1 p=1
x Ege—i'yot/2<,}/0,yl _ i:i“fyofy” _ i,l.%J,YO,yJ)ei’yOt/ng L*f(o)dn—Qx (417)
— S(T)e 7°t/2 (/ f(n_l)ocyﬁ (67, — 213 ,), [ foyd 2g~0~7
2 9oo e o P}
: 06~ A n—2_.0.1J 17 0¢/2
—i f(n—l)OocW T/ fod" "y y €0 (418)
Ooo Xt 2 p=1
= 87r€$e’”0t/2 <K1'yofyl + %Jufyofy”) 12, by definition . (419)

The upshot of these calculations is that corollary NnoOw says
0 < Q(e) = 8mefe /2 (E] —iPry' + K%y + %Juvovu) 2. (420)

By lemma , Q(e) is conserved. Since €p is an arbitrary constant spinor, it must then be
that e "Y/2(E] — Py’ + K70 + 1 STy )e °t/2 is ¢-independent too.

The e "°#/2 and ¢7°t/2 book-ending thls expression are merely performing a unitary change of
basis; they don’t affect the eigenvalues of the hermitian matrix,

ET —iPy" + K"y + §J17°9"

. Since € is arbitrary and Q(g) > 0, it must be that EI —iPiy" + Ky + 1J;,9%9"
non-negative definite. O

Corollary 4.8.1. The energy is not unbounded below as a function of the other physical quan-
tities. In particular, E > max(eigenvalues(iPy" — 217%™ — K17%47)).

Understanding the general case where £ = max(eigenvalues(iP;y" — 1 J;,7°9" — K;7°9")) may
be quite complicated - e.g. see [44] and references therein for the analogous problem in asymp-
totically flat spacetimes. However, the following special case - analysed for asymptotically flat
spacetimes in [35] - is much more straightforward.

Corollary 4.8.2. The only solution where E, Py, Jr; and K; all vanish is AdS.

Proof. Just as in the more general corollary [3.19.2] E, P;, J;; and K all vanishing implies
Ve = 0. Furthermore, With the present assumptions, Ve is not just zero for some ¢, but for
the € that results from any choice of ¢; in €.
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First, Ve = 0 implies the ’integrability condition,’

0 = [V],Vj]s (421)
= [Dr +iay, Dy +iavyle (422)
= [Dy, Dyle +iay;Dre —iavyDje + iayV je —iay; Ve (423)
1

— —ZRWIJVWC” +iay s (—iayre) — iay (—iayse) + 0 =0 (424)
1

= —ZRWU”y’“’s — 2042")/]]6 (425)
1

= =1 Ruwrs + 20 )y"e. (426)

Since g can be chosen arbitrarily, equation holds for a basis of spinors near J,%;.
Suppose {e,}*_, is a set of spinors solving Ve, = 0 and linearly independent near 0,,%;. Let
{ca}r_, be constants in C and let ¢ = c,é,.

Suppose, for a contradiction, that the ¢, are non-zero, but 9 a point, p, where 1) = 0.

g,’s linear independence near 0,,%; = ¥ # 0 near 0y>;. Furthermore, by construction,
V¢ = 0 everywhere.

Now, I can repeat the same argument I used between equations [91] and - with 2o = p and
x1 being some point, ¢, near (but not on) d.¥; - to conclude that ¢» =0 at q.

This contradicts ¥ # 0 near 0.

Hence, all the ¢, must be zero to get ¢» = 0 somewhere.

*. Linear independence near 0,.%; extends to linear independence on all of X,.

. At any given point, ¢ could take an arbitrary value in equation [426|

" (Ruvrs + 20umus) v = 0.

Since {y*"} are also linearly independent, it must be that R,,;; = —(0urms — usnur)-

It remains to be seen what happens for R,,o;.

Rikor = Rorox = —(Mosnix — Moxnry) = 0.

That leaves Rojor = —Roors — Rorjo = Roro-

Since a basis of ¢ is allowed, theorem also implies 7%y, = 0. But, the eigenvalues of
T%y, = 0 are T £ \/TOITY | so it must be that 7% and T°! are both zero, i.e. T = 0.
By the dominant energy condition, —7"% V" is future directed and causal whenever V* is future
directed and causal.

Choose V#* = ¢* 4 5 for some value of I.

=T VY = =TH =T =0— 6T

However, this can only be causal if 77/ = 0.

.. Ultimately, Ty, = 0.

s Ry = 25 A, = —(n — D).

—(n=1)61; = R";,; = —Roros+R" 1 ; = —Roros— (6" 017" ;0k1) = —Roros—(n—2)d1,.
.. Rorog = 015

.. Putting all the components together, R0 = —(MupTve — Muolvp)-

From [45], the only spacetime with R0 = —(MupNve — Muetlp) and the chosen fg) is AdS. O

In general, the eigenvalues of ET —iPpy! + 1J;,7°9"7 + K174 cannot be found analytically.
However, progress can be made in specific cases For example, if one assumes J;; and K are
zero - as is effectively done in [20, 4], then the eigenvalues are E + /P; P!, meaning one must
have E > v/P;P!. There are further examples in specfic dimensions. For example, if n = 4

and P; = 0, then one finds £ > \/%JUJ” + K KT+ Jig J,XK'K’. See [13] for many other

permutations.
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4.2.1 5D, equal angular momenta Myers-Perry solution example

The examples so far are still very abstract. It’s best to calculate the various physical quantities
for a concrete metric and illustrate the implications of theorem [3.19, A sufficiently simple, but
non-trivial, example is the 5D, equal angular momenta Myers-Perry Solutionﬁ (with cosmo-
logical constant). Following [46], this solution can be expressed as

1
g=-S*dt®@dt+ f’dR® dR + Zh?(dw + cos(f)d¢ — Qdt) @ (dy + cos(0)dg — Qdt)

1
+ ZRQ(dQ ® df + sin?(0)d¢ @ do), (427)
1 , 2MZ 2Ma* 9 2Ma? 4Ma
WhereF:1+R— R2 + R4 ,h:R 1+ R4 ,Q:m,
Z=1-d* S= % and M and a are constants. (428)

In these coordinates, t is a “time coordinate” taking values in R and the remaining coordinates
would parameterise R* as

T Rcos(0/2) cos((v + ¢)/2)
za| _ | Reos(0/2)sin((¢ + ¢)/2) (429)
s Rsin(0/2) cos((v — ¢)/2)
T4 Rsin(0/2)sin((v — ¢)/2)

This parameterisation implies R € (Ry,o0), where Ry is the radius of the event horizon,
6 € [0,7] and (1, ¢) takes values in R? such that (¢, ¢) lies within the square with vertices,
(0,0), (47,0), (2m, —27) and (27, 27). Furthermore, in these coordinates, the AdS metric is

dR®dR
1+ R?

+ }lRQ ((de) + cos(#)d¢) @ (dy + cos(A)d¢) + df @ df + sin®(0)d¢ @ dg). (430)

gaas = —(1 + RH)dt @ dt +

For my purposes, it will be more convenient to swap (¢, ¢) for (¢1, ¢2), where

b= 50 +0) and 6= 26— ). (131)
Then> ¢1 € [07 27T], ¢2 € [0727T]>
T Rcos(6/2) cos(¢1)
xo| | Rcos(0/2)sin(¢r)
.CE;QJ, ~ | Rsin(6/2) cos(qﬁ;) (432)
Ty Rsin(0/2) sin(¢s)
and dy + cos(f)d¢ = (1 + cos(0))de; + (1 — cos(0))deps. (433)

The first step in exemplifying the results in sections[2]and [3is writing equation in Fefferman-
Graham form for an asymptotically AdS spacelﬂ. Since the f2dR®dR in equation depends

29This is a black hole solution, contrary to the assumption I made at the start of section However, as
mentioned then, the arguments can be adapted - as per [4] - to include (marginally) outer trapped surfaces.
Hence, the Myers-Perry metrics are admissible for exemplar purposes.

39Note that being able to do so is proof the metric is indeed asymptotically AdS.
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only on R and R — oo heuristically looks like the asymptotic end, it is natural to try r = r(R)
as the Fefferman-Graham coordinate.

d
dr@dr= f2AR® dR <« d—; _— (434)

dR. (435)

/\/1+R2 21}\§2Z+2Ma2

This integral cannot be done explicitly. However, it only needs to be done perturbatively to
generate a Fefferman-Graham expansion. For AdS, the square root in the expression above
would have just 1 + R?, so it makes sense to perturb around that.

Therefore, to leading order in perturbation (it will become apparent this is the extent of the
necessary perturbation),

1

/ dR (436)
2 a2
N s
MZ Ma?
+ 1 — dR 437
/\/1+R2 ( +R2(1+R2) R4(1+R2)) (437)
1 MZ
+ dR 438
- /(1+R2+R5> (438)
2) - —
(1n<R+\/1+R> 4R4> +C. (439)
To get r — oo as R — oo, I should choose the + in +.
" = C(R+ V1 + R?)eM7Z/AH (440)
MZ
— C(R+V1+ R?) <1 — 4_R4> . (441)
To match the AdS solution asymptotically, where M = 0, I should choose C' = =
1 MZ
— §(R +V1+ R?) (1 — 4_R4) (442)

To write equation in the form of equation , I'll need to calculate R? in terms of r (per-
turbatively). To leading order, the AdS calculation implies R? = " (1 — {e _QT) To find the
correction to this, I just have to track the leading order term containing an M factor. Hence,

1 S| MZ
e’ (1 — —e27“) — Z(R + V1 + R?)? (1 - —)

1 AR?
«(1-1 1 |4 M2 2 (443)
4(R+V1+ R?)? 4R*
1 MZ
_ 2 S
T (1)

" (1 (me) (”MZ)) ' (444)

The leading order term is R?, from the AdS calculation. The leading term containing M comes
in at 5 from the first factor, but 4z from the second factor. Thus, I just get

1 2 MZ
2r —2r 2
e (1 - ) SR R (445)
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Since R = ¢e” to leading order, I also immediately get

1 > Mz 1 2 M1 -a?
R? = e <<1 - Ze‘”) +— e_4’"> = e ((1 - Ze_2r) + M -a) 5 ¢ )6_47”) . (446)

Next, consider equation perturbatively.

R2
2
= T (447)
OIMZ  2Ma? 1
=R*(1+R*— 44
R ( TR T >R2(1+2Ma2/R4) (448)
oOMZ 2Ma®
— (1+R2— = ) (1—T4“) (449)
M (Z + a?
= (1 +R? - %) (450)
oM
= (1 + R — ﬁ) (451)
1 > M1 -a?
— <1 + e (1 — Ze—27”) + %e_% - 2Me_2r> (452)
1 > M(a?
— e ((1 + Z—Le_gr) - we_‘”) . (453)
2Ma?
h? = R? (1 + Rf ) (454)
2r 1 —2r ? M<]' — CL2> —4r 2 —4r
—e -7 e (1+2Ma’e ™) (455)
1 2 M(1 — a?
— e <<1 - ZeQ’") + (2M6L2 + %) e4r) (456)
2r 1 —2r ? M(]' + 3(12) —A4r
=e 1- ¢ + — 5 . (457)
4M
h*Q = R2a — 4Mae " to leading order. (458)

Substituting these expressions back into equation yields

1 > M(a?
g= dr®dr+e2’( — ((1 + Ze‘2’“> — we““") dt ® dt

4 4 2
— Mae " (dt @ (i) + cos(8)de) + (dy + cos(f)d¢) ® dt)

+ ! ((1 — 1e_QT) + Me_‘“’) (de) + cos(0)d¢) @ (dp + cos(#)de)

N 411 ((1 - 411 6—27«) M (12— “_2>e—4r) (A0 ® d6 + sin*(0)d¢ ® ¢) + O(e‘&")) - (459)
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.. The metric is indeed in the form of equation [8| and one can immediately read off

Foypmmda™ @ dz" = —dt @ dt + i(dw + cos(0)de) ® (dy + cos(6)dg)

+ i(dQ ® df + sin?(f)d¢ ® ¢) and (460)
fymnda™ @ dz" = Mdt ® dt + M(%m(dlb + cos(f)d¢) @ (dp + cos(6)de)
— Ma(dt ® (dy + cos(0)d¢) + (dy + cos(0)d¢) & dt)
M(d& ® df + sin?(0)d¢ @ do). (461)

The f(o) expression also implies n%) = ™% and

fg)lfam@an: —8t®8t+48w®8¢,+489®89
4

(- . 462
+ sin2(9)( COS(9)0¢ + 8¢) ® ( COS(@)&p + 8¢), ( 6 )
the latter because
-1 0 0 0 -1 0 0 0
0 1/4 0 cos()/4] | O 4+44cot?(@) 0 —4cos(d)/sin*(0)
0 0 1/4 0 0 0 4 0
0 cos(d)/4 0 1/4 0 —4cos(d)/sin*(0) 0 4/ sin*(0)
1 0 0 0
10 1 + cot?(#) — cot?(6) 0 —cos(f)/sin?(#) + cos(f)/ sin?(0)
0 0 1 0
10 cos(6)(1 + cos?(6)/sin*(0) — 1/sin*(9)) 0 — cot?(0) + 1/sin*(6)
(463)
[1 0 0 0
01 00
10010 (464)
00 01

I can now finally calculate the physical quantites that appear in theorem [4.8] By equation 81}

E= %ﬂ /S & faymnd(gs2) (465)
= [ (= Fon 401+ cor00) e — S50 o+ s+ s o
+ f(4)00) d(gss) (466)
B %/S ((1 + oty M0 ; 30%) QS;S(%) M : ) o)+ M(18— a?)
b (2 o) + MU 2D i) Jatgs (467
= w /S _dlgse) (468)
_ wM(cf +3) (469)
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which matches the result quoted in [46], but calculated via a different methodﬂ
Next, by definition [4.7]

4 . )
Fr= 16z /53 foy Faymn1d(gs3) (470)
M 2
_ (CLS +3) / 27d(gss) by the same algebra as for E (471)
s S3
o (472)

which matches what one would intuitively expect for the Myers-Perry metrics.

When calculating K; and J;;, the % terms in definition are more easily calculated when
using the (6, ¢y, o) coordinates on S*, as opposed to the (1,0, ¢) coordinates used to calculate
FE and FP;.

For both K and Jrs, I need to first calculate f(4)0a 3.7 axf |p 1.

From equation {461},

fayoadz® = —Ma(dip + cos(6)d) (473)
= —Ma((1 + cos(#))de; + (1 — cos(0))des). (474)

From equation 432} ¢; = tan~'(z/21) and ¢» = tan~!(z4/z3). Hence, on the unit 3-sphere,

OPq _ 1 T2 _ T2 _ Sin(¢1) (475)
Ory  1+a3/z3 \| a? x? 4 23 cos(0/2)’
091 _ 1 Y. wn cos(¢n) (476)
dxy 14 23/23 \z 2423 cos(6/2)
Op1 _ 0¢1
d — 4
an 92, 01 = 0. (477)
8¢ 0¢2 8¢2 Sin<¢2) 8¢2 COS(¢2)
Similarl — =0, — =— d = : 478
Y Oer T Ows ) Owy sin(0/2) O x4 sin(6/2) (478)
Putting these expressions together with the f(4)0.dz® expression above,
00
f(4)0cx$
o3} ol
=—Ma ((1 + Cos(G))axI + (1 — cos(@))@) (479)
= Ma [1;;(35;29)) sin(gr) — o cos(@1) Lo sin(¢a) — ey cos(ng)] . (480)
Since fOQW sin(¢y 2)d¢r 2 = 0, T immediately get
00
—1 d(gss) =0. 481
. f(4)0a8x1 - (9s2) =0 (481)
1 . 00°
coKp = —E Jxlf 0a57 d(953)- (482)

31Note that while the choice of the letter, M, for the constant, M, suggests it should be the mass/energy,
this is not the case.
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However, observe that the integrand contains

00«
~J b 4
z f(4)0aaxJ - (483)

= Ma [cos(6/2) cos(¢1) cos(6/2)sin(¢y) sin(6/2) cos(¢o) sin(/2) sin(¢o)]
iﬁ;{;s/(%) sin(¢1)
1+4-cos(6
x| 2l .OS(¢1) (484)
51n(€/280)81n(¢2)

1—cos

sin(0/2) COS(¢2)

=0.

(485)
Hence K; = 0 too, again matching what one would intuitively expect
Finally, there’s Jr;. For that, I need

00%
$If 4H)0an 7

oxrt

(486)

(9/2) cos(¢1)

eon(er2)snten)

@ |sin(6/2) cos(6»)
sin(6/2) sin(¢o)

[1+Cos(€)

cos(6/2) Sln(¢1) —Lieos®) COS((bl) 1cosld)

1—cos(0
cos 9/2 sin(0/2) Sln(¢2) - 5111(9/(2)) COS(¢2>

(487)
(1 + cos(0)) sin(¢y) cos(¢y) —(1 4 cos(h)) cos?(¢)
~ Ma (14 cos(6)) sin?(¢y) —(1 + cos(0)) sin(¢1) cos(¢y)
(14 cos(#)) tan(0/2) sin(¢y) cos(¢p2) —(1 + cos(f)) tan(8/2) cos(¢y) cos(ps)
(1 + cos(0)) tan(0/2) sin(¢y) sin(¢2) —(1 4 cos(#)) tan(0/2) cos(¢y) sin(¢ps)
(1 — cos(f)) cot(0/2) cos(¢pr) sin(pa) —(1 — cos(6)) cot(0/2) cos(¢y) cos(¢ps)
(1 — cos(0)) cot(0/2) sin(¢q) sin(¢2) —(1 — cos(#)) cot(0/2) sin(¢y) cos(¢p 2) (488)
—(1 — cos(0)) cos?(¢p2)
(1 — cos(6)) sin?(¢) —(1 — cos(#)) sin(¢s) cos(¢2)
This appears as an integrand inside [ 53

gs3). In particular, the 27 range of ¢; and ¢, means
those integrals can be done inspection, leaving

(1 — cos(6)) cos(¢2) sin(¢2)

/ / N donde;
—(1 4 cos(#))/2 0 0
2 (1+ cos(@))/2 0 0 0
= dmMa 0 0 0 (1 —cos(@)) /2| - 489
0 0 (1 —cos(0))/2 0
Finally, by definition [4.7]
1 . 00” . 06
Jrg = e . J4)0a (m@ - - xj@ p_l)d(953> (490)
m 0 —(1 4+ cos(0)) 0 0 (8) cos(?)
_ 1 4 cos(0) 0 0 0 sin(5) cos(3
- 7T]MOL/ 0 0 0 —(1 — cos(#)) 2 do
0 0 0 1 — cos(0) 0
(491)

48



Then, since foﬂ % sin(0/2) cos(0/2)d0 = }lfoﬂ sin(f)df = % and

2

Jy cos(8)3 sin(0/2) cos(0/2)d0 = £ [ sin(26)dd = 0, T get

0 -1 0 0

~mMa |1 0 0 O
JU:T 0 0 o0 -1l (492)

0 0 1 0

This result justifies interpreting the original metric - equation - as containing two equal,

independent angular momenta, 7Ma/2. If one measures angular momenta with respect to -2-

oY
o _ 1(.0 ) o _ 1(.0 )
55 = 35, + 87)2) and 55 = 3(34; — 34;), the angular momenta

would be 7Ma/2 and 0 respectively - matching the result in [46] up to a factor of two (which
is presumably only a matter of conventions).

At last, T can consider theorem [4.8] which reduces to saying ET + iJip7°y'7? + iJ347%7%4? is
non-negative definite.

Using computer algebra for example, one can check the eigenvalues of this matrix are

E+ Jio+ Jsay, E— Jio+ Js4, E+ Jig — Jsq and E — Jyg — Ja4.

.. Non-negative definiteness is equivalent to

E > |Jia| + |Ja4l, (493)

and a% instead, then since

which one can recognise as a BPS bound of 5D gauged supergravity. In terms of the actual
values I've calculated for F and J;;, equation [493| says

mM(a* +3) >nMa < (a—1)(a—3)>0. (494)

Therefore, supersymmetric limits are reached by taking a — 1~ or a — 3*. Unlike the charged,
asymptotically flat case [I8, 19], here the BPS bound does not coincide with the condition to
have a regular event horizon? Instead, the BPS bound can lead to singular horizons now.

While perhaps strange, this is behaviour known to occur for supersymmetric limits of rotating
black holes with A < 0 [47, [4§].

4.3 General cross-sections

The Kottler metrics are

dR® dR .
W + RQQ( ), (495)

where ¢ = 1,0, —1, ¢g(!) is the metric on the unit (n — 2)—sphere, g(® is the metric on a unit
(n — 2)—torus and ¢~! is the metric on a compact identification of (n — 2)—dimensional
hyperbolic space. In the last two sections I have studied the round sphere and the torus.
However, these metrics continue to satisfy the Einstein equation, R, = —%(n —1)(n—2)gap, as
long as ¢(°) has Ricci tensor equal to ¢(n — 3)d4p. Re-writing the metric in Fefferman-Graham
coordinates gives the following definition.

g=—(c+RHAdt®dt +

Definition 4.9 (Kottler with cross-section, H). A metric is defined to be Kottler with cross-
section, H, if and only if

2 2
g=dredr+e* <— (1 + ie*%“) dt @ dt + (1 - ie*%) H) (496)

and H is a Riemannian, Einstein metric on a compact manifold such that RE{Q =c(n—3)0an
forc=—1,0 or1.

32This is especially manifest given (a — 1)(a — 3) doesn’t even depend on M.
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The main objective of this section is to prove that if H is “symmetric” in some sense, then there
is a positive energy theorem for spacetimes that are asymptotically Kottler with cross-section,
H, i.e. asymptotically locally AdS spacetimes with f) = —dt @ dt + H.

Lemma 4.10. The non-zero connection 1-forms (up to antisymmetries) for equation are

er _ ge—r eT‘ _|_ 26—7"
wor = ———¢", way = —2— e and wup = wﬁ{?, (497)
eT _'_ Ze—T' eT’ _ Ze—r
where e’ = (er + ;le”') dt, e = dr and e = (er — 26”“) e, (498)
Proof. For this choice of vielbein,
el — Se™"
de® = <e’” - Ee_r> dr Adt = —2—e! A€, (499)
4 er+ je’"
de’ =0 and (500)
de? = <e’” + Ee_’") dr A eA 4 <e’” - 26"”) detf)4 (501)
eT _|_ ge—r
=24 elpnet+ (eT — Ee_’”) deH)4, (502)
e — ge" 4
ngB) satisfy de)4 = —w(H)AB A e)B by definition.
Then, by inspection, the w,, claimed in the lemma likewise satisfy de = —w*, Ae”.
Since connection coefficients are unique, the claimed coefficients must be correct. Il

Lemma 4.11. If Ve, = 0 for a Kottler metric with cross-section, H, then

ep=e€"PPre_ 4+ e "?Pfe,, (503)
where 1 must solve De_ = —iye,, DYe, = Loyae_, Oe_ =inley, Oey = % and
&8_ = 37_€+ =0.

Proof. The equation to solve is

/7

1 .
0=V,er=¢, Oper — Zw”p‘ﬁypek + %wek. (504)

m

Start with ;4 = 1. Then, from lemma , equation reduces to 0 = J,e + %'715k-
- er = e 7'7/2¢ for some spinor, ¢, that doesn’t depend on 7.

Split €, up into eigenspaces of 71, i.e. e, = P[e_ + P e,.

cep=e T2(Pre_ 4 Pre,) =e2Ple_ + e 2Pfe,.

Next consider p = 0. Then, from lemma [4.10)

T _ CeT

1 i
0=——0 — 4 0Nt _40g, 505
e + e et 2(er + ﬁe—””)7 Tk (505)

(S

1
S 0=0,(e"?P e +e?PFel) + 3 (er - ie’r> AN e 2 Pre_ + e 2Pfel)

- % ( oy Ee—*) (2 Pre_ + e 2Pe,) (506)

_ eT/QPf(?te’:L + 671"/2P1+at€+ + %e3r/2,}/0plf€7 _ gefT/QVOPfg, - %QT/270P1+€+

ic s, i, _ ic _, _ 1,
+ 3¢ 3/2,0pte, — §e3 12O0pre_ — 3¢ 2O0pre_ — 3¢ 120pte,
B ge—3r/270pl+€+ (507)
— e"/2pr (De- —in'es) + e /2 pt (8t6+ — fvoa_) . (508)
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Since the two ~! eigenspaces have no non-trivial intersection, it follows that d,c_ = iy’ and
— ic.0

Oey = F7e_.
Finally, consider ; = A. Before applying lemma to equation |04} note that

wap = wi) = wapce® = Wi e (509)
1 (H)
= — . 510
o — ie,rWABC6 (510)
1 (H)
= — . 511
WABC o WaBc (511)
Hence, the Killing spinor equation says
L ma 1 (H) _ BC e rie” a1
0= ——F— Oull — ———F—— - = . (512
o ie_reA €k e = ie_r)wBCA7 Ek e Zie_rﬂ Vet 5VACk (512)
1 c i c
. :D(H) __<7“ _—r) A1 _<7"__—r> 1
2.0 A kg +4e 'y’ysk+2 e — e ) Ve (513)
1
— D1(4H)(er/2pl—€_ + e—r/2pl+8+) i 5 <er + ie—r> 7A71<er/2pl—€_ + e—T/2P1+€+>
1 r c _» r/2 p— —r/2 p+
+3 (e —7° )fyA(e Pre_+e P ey) (514)

_ er/2P1_DE4H)5_ e 2prpHe, - %e3r/2%4p1—8_ _ ge—rmmpl—g_ + %er/%APfrar

n igcegﬂ«/gfmpfrg+ n %€3T/2’YAP1€ _ igcer/z,mpl€ 1 %er/LYAPfr&r
B igce_gr/2’7AP1+5+ (515)
= e"/2pr (D;H)s_ + 17A5+) +e772prF (Dﬁ,H)sJr — %C’YA6_> : (516)
D,(qH)é— = —iyae4 and DﬁxH)5+ = %VAg—' -

Theorem 4.12. The most general solution to V e, = 0 for a Kottler metric with cross-section,
H, is

2P ey for c=0
ep =1 e/2P; (eiVOt/Q — ie_wotm) en + e 2Pf (e”ot/2 - ie‘”otﬂ) ey forc=1 (517)
0 for c = —1
where g solves DE4H)5H = 574€n and Oiey = 0.
Proof. Start with ¢ = 0. From lemma , I need die_ = iv'e,, ey = 0, D1(4H)5_ = —iyaey
and DE4H)5+ = 0.
From the first two equations, it follows that e = ity%, + ey for some spinor, e, that (like

e, ) doesn’t depend on t.

co—lyags = D1(4H)5, = itfyOfo)&r + D1(4H)5H =0+ DQH)EH.

D(H)ADAH)gH = —i’yADI(L‘H)5+ =0.

Let ¥;, be constant ¢ and r surface. Then, by >, ,’s assumed compactness,

0= / eh, DIADU (2, )d(H) (518)
¥

t,r

=— / (D4e,) DI (e )d(H) = Dy = 0. (519)
Etr
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Since —iya e, = DiH)g p from above, it follows that ¢, = 0.

That leaves e = ey with ey solving DAH)sH =0.

It follows by inspection that all six conditions in lemma [4.11] are now satisfied - no further
constraints are necessary.

Next, consider ¢ = 1.

. I have to solve de_ = iney, ey = 19%_, DE4H)€_ = —iy4e4 and DE4H)5+ = lye_.

Let

1 1
YW=cec_+2, and p=¢c_ — 2, < c_ = §(w + ) and g4 = Z(w —¥). (520)

i i H i H i
0 = 37", = =37, DY = Syap and DYV = —fyav.
oo = 26Ny, and Y = 2e” 170’5/2(,0 for some splnors ¥y and P, that don’t depend on t.
Equivalently, e_ = e°t/24), + ¢ "1/2p, and e, = (e 20, — e U200,
By construction, I can assume without loss of generahty that P £+ = 4 = 4 = Fiyles.
e = ewot/Q’l/Jt 4 e—l’yot/ngt — _i,.yl<el"/0t/2wt 4 e_wot/QQOt) — —ie_wot/Q’}/lwt - iewot/2”}/190t.
Setting ¢ = 0 in the previous equation then implies

Ui+ o = =iy — vl (521)
Meanwhile, setting t = 7 implies

(cos(m/2)I +isin(m/2)7")by + (cos(m/2)I — isin(m/2)7%) ¢,

= —i(cos(m/2)I — isin(m/2)7")y' by — i(cos(m/2)1 + isin(m/2)7")7y o (522)
= 1% 1% = "7+ e (523)
A A (524)

Putting the ¢t = 0,7 equations together, it immediately follows that ¢; = —iyly; (and this
relation solves both equations).

el =2y 4 e 20, = (T — i)y, and (525)
1, . , 1 .
€+ = 5(8170,5/2% —e M2y = E(I +iy")e 2, (526)

Next, consider the DE4H) constraints on ¢ and ¢. In terms of ¥; and ¢;, they now imply

. : . . 1
2e1’yot/2D1(4H)wt — %'%426_17%/2%01& — D&H)l/}t = %’YAQOt = 5’)/14’}/177015. (527)
Let ey = (I + Y)Yy <= = (I — 7 )en
H H)
- DiVen = (149" DY 0 = J(I+7 )%%w Yo = trall =117 = Sva(r + Doy = vacn.
Writing €1 in terms of ey, I get
e = (I —iy")e" (I —yYey = (I —iy") ("2 —ie ")y and (528)
1 : 1 . A
e = I+ = ey = S(1+in!) (2 4o ey, (529)

which is the result claimed in the theorem.
For completeness, I'll check that the conditions in lemma are indeed all satisfied. Take

P (e”%/2 — ie’”otﬂ) ey and g, = <e”0t/2 + ie*i'yotﬂ) €. (530)

1
2
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The time derivative are

1 1 . i . .
. atE_ _ (21,}/0617 t/2 2,}/06—17015/2) ey = %70 (el’yot/Q + ie—l’yot/2> ey = i,yog_’_ and (531)

Dy = % (; ,yoewot/z i %,yoe_wom) P i,yo (eivotﬂ _ ie_iVOt/z) ey = ;1705_’ (532)
while the space derivatives are
( int/2 —1'yot/2> D,(4h)5H (533)
1
< int/2 170t/2> §7A5H (534)
1 .
= S (72 i) oy (535)
= —iys e, and (536)
1 . .
D, = 2 (72 +ie"2) Dey (537)
1/, : 1
— 5 (elryot/2 + ie_wot/2> E,yAgH (538)
1 ) )
— Z/VA (e—l'yot/Q + ieyyot/2> EH (539)
i
= VAE (540)
which implies all six constraints in lemma are satisfied.
Finallyg consider ¢ = —1.
The DAH) constraints are D;H)g, = —iyse4 and DE4H)€+ = —}l’yAe,.
S DIADE e — _ipAD[e, = _1yAy e =2
Then, from ¥, ,’s assumed compactness,
4
/E ele_d(H) = — /2 el DIADED (= Ya(H) (541)
t,r t,r
4
- /E (DA ) DUD (= a(H). (542)
t,r
The LHS is non-negative while the RHS is non-positive, meaning they both must be zero.
=0
ey = 0 too from D( Je_ = —ivae,. O

The main upshot of this corollary is that given any static boundary, f) = —dt @ dt + H,
if H admits a parallel spinor or (real) Killing spinor, the full spacetime will admit a positive
energy theoremﬂ. Furthermore, the “boundary charge” can now be evaluated solely in terms
of quantities defined on the boundary, 0,%;.

Theorem 4.13. For spacetimes which are asymptotically Kottler with cross-section, H, if the
FEinstein equation and the dominant energy condition hold, then

Qe) = (n— 1)/{9 § parely (cos(t/2)1 — sin(t/2)7°) 104 Py
x (cos(t/2)I — sin(t/2)7")ey d(H) when ¢ =1 (543)

-1
o / ey’ YM Prey d(H) when ¢ = 0. (544)
O 2t

and Q(e) = 5

33If the asymptotic region admits multiple spin structures, then the usual caveat about compatible spin
structures still applies.
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for ey solving DE4H)6H = 574én and Oey = Orey = 0. In both cases,

Qe) = 2/ ((V1e)'V'e + 4nT%e yyy,e) AV > 0. (545)
¢

Proof. The proof is simply a matter of substituting equation into theorem [3.19|

As the boundary geometry is fi) = —dt ® dt + H, the integration measure, \/u* fo)d" 2z
reduces to d(H).

For the rest of the integrand, consider ¢ = 0,1 separately. When ¢ = 0,

geyMey = el Py AM Prey = el /%M Prey (546)

and hence the claimed result follows.
Next, consider ¢ = 1. The e™" factor in theorem means it suffices to ignore any components
of xyMey, less than O(e").

L EyMe — e (Prel ) 0yM Pre
= el AOyMPre_
. . T . )
— " ((el'yot/2 . ie—l'yot/2> 5H> ,_)/O,)/Mpl— (el’yot/2 . ie—l'yot/2) €x
_ erg’}{ <efi'yot/2 X iei’yot/2> 0 P (ei'yot/2 _ iefi'yot/2> -

ergTH (COS(t/Q)[ — isin(t/Q)fyO +icos(t/2)I — Sin(t/2)'yo) ’YO’YMPf

x (cos(t/2)I +isin(t/2)7" —icos(t/2)] —sin(t/2)7°) ex (551)
—e"el (141) (cos(t/2)I — sin(t/2)7°) *+™ Py
x (1 —1) (cos(t/2)I —sin(t/2)7") en (552)

= 2¢"el, (cos(t/2)I — sin(t/2)7°) '™ Py (cos(t/2)I — sin(t/2)7°) en, (553)

which gives the claimed result. O

Solutions to DE4H)5H =0 and D1(4H)5H = %’yAeH are well-studied problems for mathematicians.

One subtlety in comparing with the maths literature is that {y4}"_}, don’t form an irreducible
representation of the Clifford algebra; a (Riemannian) Clifford algebra with n — 2 elements
would have 2L"=2/2) 5 2l(=2/2] matrices, not 2172} x 217/2) matrices like {y*}Z} € {+*}7,.
The doubled size means there are effectively two irreducible representations summed in 4.
This can be made much more concrete, as follows. Suppose {§4}%_} form an irreducible
representation of the Clifford algebra with n — 2 elements. Then, v* can be chosen to be

I 0 0 —I 0 44
0 _ 1 _ A _ Y
Likewise, split £z into two 21"/2/=1 component blocks, i.e. ey = [, p]T. Then,
any__ (may Loy ([0 4]0 4P [0 47710 44 W
Dy en = <€A Oa 8WBCA ({:YA O} {:}/B 0 480 144 0 (555)
H)a L any [A48 0 (0
= (0, - 3 |y 50 ) | (55
D
= |2 v (557)
Dy e
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*. The general solution to DE4H)€ u = 0 on M is constructed from a pair of spinors on the cross-

section, ¥ and ¢, each parallel with respect to lA)félH). There are many compact Riemannian
manifolds admitting parallel spinors - see [49] for a classification in the simply connected case
and [50] for more general comments.

Similarly, since
0 4 .
ven =0 |19 = 1229, (55%)
YA

A(H) 4 2(=)

. 1 1
DIV = 4 25,6 and ey = < |1 0 (559)
2 2|6y — €y
*. The general solution to DﬁlH)g o= %’)/ASH on M is constructed from a pair of real Killing
spinors on the cross-section, ég), satisfying ZA)EXH)éSLI) = jzlﬁx ég).

From [51], there are some strenuous constraints on solutions to DgH) Agr{i) = +14,¢ Eq First of
aAll there is not necessarily any correspondence between solutions of D ) )egq) = 294 égq) and
Df4 )5%) = —§7A55LI (albeit swapping orientation swaps the meaning of + and —). Moreover,

for any even dimension, except n — 2 = 6, the only metric, H, admitting a solution to either
equations is the standard metric on S 2, which I've already considered in section and will
revisit in section |4.3.3] For odd dimensions, for simply connected cross-sections, other than the
round sphere, one can also have Sasaki-Einstein spaces and Sasaki-3 spaces in general, besides
some other specific examples when n —2 = 7. Furthermore, having both ég) and ég{_) Nnon-zero

is only possible for simply connected cross-sections when n —2 =1 (mod) 4

Having decomposed solutions of DgH) = 574 into spinors defined completely on the cross-
section, it makes sense to re-write theorem purely in terms of cross section data.

Theorem 4.14. Suppose a spacetime is asymptotically Kottler with cross-section, H. Assume
the Einstein equation and the dominant energy condition hold. Then, when ¢ =1,

—1 o
Q) =" / (37" +1e"207) (pol —ipad®) (2 — e el ) d(H). (560)
Ooo Lt

for égc) solving lA)gH)égc) = j:%ﬁ SLI Likeunse, when ¢ = 0,

n—1

Qe =" [ Gl —ipa3) i), (561

where @@ solves lA)I(L‘H)Qﬁ = 0. In both cases,
Qe) =2 / ((V1e)'V'e + 4nT%e yyy,e) AV > 0. (562)
3t

Proof. Start with ¢ = 0. From the discussion above, the most general solution to Daey = 0 is
given by ez = [, p]T where ¢ and ¢ are both parallel with respect to D;H)
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Then, to apply theorem I need to evaluate pM»sLyoyM Prep.

1 )
5LVO’VOP1 EH = [@DT SOT}T B [—[il lﬂ {zﬂ
1
=5 (W +ile —iph + ¢lp).
I 0 0 A1 1T il
EJ}[’YOVAP1 €H = [1/;[ SOT}T |:O _]:| [,?A ’YO} 5 |:—i] 1I:| {:ﬂ

0 44 i
GRS B |l

T [<49 + 440
G
(=" + T4t — T4t —ipTate) .

L\DI»—k N~ DN~

Putting both parts together,

t (W - jng) (pol — ipay™) (¢ +ip).

pue M Pley = :

Defining @/A) = 1) + ip proves the claim for ¢ = 0.

Next, let ¢ = 1. This time, by the discussion earlier,

1
2

&0 1 élp

£ _ g0

€H =

for égqi) solving lA)gH)égE

) = :I:%&Aég:). By theorem [4.13|I need to evaluate

pMeTH (Cos(t/2)l - sin(t/Q)vO) VM P (cos(t/2)1 — sin(t/2)~°

When M =0, I get

el (cos(t/2)I — sin(t/2)7°) Py (cos(t/2)I — sin(t/2)7")en

1 R . ()] [(cos(t/2) —sin(t/2))] 0
B [ e Egﬁ‘ggfﬂ { 0 (cos(t/2) + sin(t/2))
y [(cos(t/?)—sin(t/Q))I 0 } g 4 )
0 (cos(t/2) +sin(t/2))I| &) — &l

H —i(cos(t/2) +sin(t/2))I

[(cos< /2) - sm(t/2>><eH’ +e57)
(cos(t/2) +sin(t/2)) (e — €5))

1 -
=3 [55{ oyt st >T}

y [ (cos(t/2) — sin(t/2))2(&5) + &57) +i(cos?(t/2) — sin?(t/2)) (€}

1
8 (cos(t/2

—i(cos?(t/2) — sin (t/z))(**) + g; 1) + (cos(t/2) + sin(t/2)

Gl >< icos(t) (&) + &) + (EFT — &N (1 + sin(1) (8
<A<+ te(Tal) | it a(ITalh) +€§q)fég)>.

»-lkll—‘—|- OOIP—‘

26

)
(<eH*+e< M@ —sin(@®) (G + 7)) + E7T+ e Nicos(t) (€ i)
(

JEH

/|

[ (1 2 A0 é(—)T} { (cos(t/2) —sin(t/2))§ i(cos( // ));:115((://22))))]1]

1
—if

(563)
(564)

(565)
(566)
(567)

(568)

(569)

(570)
(571)

i/
I

(572)

(573)

(574)

(575)
(576)



Similarly, when M = A,

el (cos(t/2)I — sin(t/2)7°) y*v* P (cos(t/2)I — sin(t/2)y")en

_ ! [ (T A AT g—)t] (cos(t/2) —sin(t/2))1 0 44
8 H H H 0 (cos(t/2 —|— Sln(t/Q)) —44 0
I il [(cos(t/2) —sin(t/2))1
% {—i[ [} [ 0 (cos(t/2) —|—sm (t/2)I §(+) é (577)
1 Bt et et ] 0 cos(t/2) — sin(t/2))5"
8 H H H —(cos(t/2) + sin(t/2))34 0
[ (eos(t/2) = sin(t/2))] i(cos(t/2) +sin(t/2)1] [ + &) (578)
—i(cos(t/2) —sin(t/2))I (cos(t/2) + sin(t/2))] ggj) — gg)
_ 1 [ (DF O A émt] —i(1 —sin(t))5* cos(t)3 e+ (579)
s e T | I R e A i
1 _ _
— 4 ( 18;1 )T,YA A(+) e 1tA(+)T,yA85LI) +elt€§{ )T,}/A A(+) —ié (H)T:YA&:SZI)> _ (580)
Putting both parts together, I get
puel (cos(t/2)I — sin(t/2)7°) vy P (cos(t/2)1 — sin(t/2)7°)en
_ (gg” + ieité(H‘”) (pol — ipai™) (égﬁ - ie—ité§;>) , (581)
which is the claimed integrand. O

When ¢ = 1, the different spinor bilinears appearing in theorem have some geometric
interpretation.

Lemma 4.15. 5%{) g(i) are constants and k&4 = —iég”’ﬁégﬂ) are (real) Killing vectors for

H. Define functions, §%) = égﬁég). Then, é(i)A = ég)T&Aég) are (complex) conformal
Killing vectors for H with £ = +D3®) and DEEE) = —§,55@).

Proof. The proof is repeatedly applying the Killing spinor equation.

. 1 1
DYy (gg”égy) = (iﬁméﬁi’) SNl (iE&Aég)) (582)
1, 1 A
=0. (584)
é(lfﬁég) are constants.
< (H) 2 1 . 1 .
DAH)kJSE) (;24{) 'yA) 735%) 155;) B (iQWA (£ )> :tlég{ )T7A35§gi). (585)
*. The symmetric part of lA?ElH)l%g) is zero.
" /%gi) are Killing vectors.
N 1 1 A
D& = (:I:f?”%) £®) 4 Pt (15&,45%)) = +&,. (586)
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DYNER = (i—é‘f”m) pely) + Mg (i—meﬁf)> = FoapeTTEE) = 15,553, (587)

2 2
. . AH) 2(&) -
.. The symmetric and traceless part of D, '§57 is zero.
- €3 is a conformal Killing vector. O

Corollary 4.15.1. If H is not a round metric on a sphere, then &) =0 and éj(f) =0.
Proof. From the lemma,

DI P g = HUD (iéB) = 548, (588)
From [52], the only compact, complete, Riemannian manifold admitting a solution to this
equation is the round sphere. O

Note this corollary does not preclude having both égj) and ég) non-zero. However, it does

mean ég) and ég;) are orthogonal on anything aside from a round sphere cross-section.

Definition 4.16 (“Conserved quantities” on the cross-section). For a Killing vector, 12:, of H,
define a “conserved quantity” by

n—1 - n—1 -
G =" [ pabta =N [ () 539
FT6r Jos, H) = Tor o, Y (H) (589)
Theorem 4.17. Define A = —iég)T&Aé%). Without loss of generality, scale égﬂ) such that
égﬁé%) = 63, where 6& = 1 if a non-trivial ég) exists and 6&) = 0 otherwise. Then, if

c¢=1 and H is not a round metric on a sphere, theorem[{.1]] can be re-written as
Qe) = 4m (BE®) +39) + Qg + Qi) (590)
=2 / ((Vie) Ve + dnT%elygv,e) AV > 0. (591)
pI

Proof. Direct application of theorem definitions & |4.16, equation lemma
and corollary [4.15.1} Il

I will illustrate some of these cross-section based theorems in the next two subsections by
studying the lens space, L(p, 1), and a squashed S7 - both some of the simplest deformations
of the round sphere.

4.3.1 Squashed 57

The simplest deformation that can be made to a sphere is squashing. However, squashed
spheres typically don’t admit Killing spinors. A rare exception is a particular squashed sphere,

H = 2%) (da ® da + ;1 sin?(a)b, ® b, + %(cgC + cos(a)b,) @ (¢, + Cos(a)bx)), (592)
by =0, — Xy, Cp = 0y + X, (593)
o1 = cos(1)dl + sin(v¥) sin()d¢, o9 = — sin(y)dl + cos(v)) sin(f)de,

o3 = dip + cos(0)d¢ (594)

and ¥, are defined identically to o, but with (¢, 0, ) replaced by some analogous coordinates,
(v',¢',¢'). The squashing comes from the factor of 1/20 in equation [92] If that 1/20 were
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also 1/4, then H would be the usual round sphere.
From [53], H satisfies R(;g = 604 and admits exactly one linearly independent Killing spinor.

Choose 7“ as per equation [554] Then, solutions to DgH)sH = %VAEH are constructed as per

equation [559] and theorem [.14]is applicable.
From [51], the only solution to DAeg{) = — ’yAesEq) is é%’) =0.

I will choose the same 4 as [53]. Then, by [53], the only solution (up to constant scaling) to

Dl = 14,60 is

g =01 -10000 0. (595)

Theorem 4.18. For spacetimes asymptotically Kottler with the cross-section in equation
iof the Einstein equation and dominant energy condition hold, then E > 0.

Proof. The proof is simply applying theorem with éﬁ;) = 0 and equation .

é&;) = 0 means I only need to evaluate &?g{) (pol — ipa¥y )A( for theorem

égﬁég) =2 by 1nspect10n and by computer algebra one finds &}, )17/1 = O for all A.

Thus, theorem reduces to saying 0 < Q(e) =2 [, . 2p0d(H) = 87TE < E>0. O
4.3.2 Lens spaces, L(p, 1)
Definition 4.19 (Lens space, L(p,1)). View S* as the level set,
{(21,20) € C* | |z1]® + | 22> = 1}. (596)
Then, the lens space, L(p, 1), is defined as the quotient of S* by the Z, action,
(21, 22) = (21€2™/P_ 2,e2™V/P), (597)

Lemma 4.20. When H = ggs, the most general solution to D(H) (H = %&Aég) 18
g = /4177 /26=027°0" /2 (598)

where €y is an arbitrary constant spinor, (0, ¢1, ¢2) are defined by

1 cos((%;; eeséil))
xz = | sin(6/2 cos((gb;; (599)

(0/2)
T4 sin(f/2) sin(¢s

and the vielbein i

1
e? = cos(0/2)d¢y, e = §d6 and e* = sin(0/2)de, (600)
1 1

= ———0, = 20p and ¢4 = ———0, 601
© 7 cos(0/2) 0 T T M T (g /2) 7 (601)

~ AH) A=) 14 a(=)

Furthermore, the most general solution to Dy 'y’ = —5YAEy " 1S
é;;) — o0 172002775 2 (602)

34The ordering of e” is chosen so that A’ in lemma [4.5| has determinant 1, not -1.
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Proof. To write the Killing spinor equation, I first need the connection Coefﬁcientﬂ For that,

1
de? =0, de* = —3 sin(0/2)df A dg; = — tan(6/2)e’ A e
1 .
and de* = 5 cos(0/2)df A dpy = cot(6/2)e? A e?.
From de? = —w?5 A e, it follows that

wsy = tan(6/2)e?, wsy = —cot(6/2)e* and wyy = 0.

c.0= eﬁ@aég) — inCA&BCég) - %&Aégj) reduces to the three equations,

1
0= 205257 — 0 — A4,

2
1 1 T D
0= m&me%) ~ 5 tan(9/2)73726%) — 57255q) and
1 1 1
0=——9 e t(0/2 ~3a44(+) L A(+).
Sln<9/2> ¢28H + 2 co ( / )fy YEH 2’)/48H

R .3,
0@82?) = 1735g)7
1 1
a(blgg) =3 sjn(Q/Q)@Sfyzé(J) + 5 cos(9/2)’yzég) and
1 1
Oy = =5 cos(0/2)73 "¢} + 3 sin(6/2)3"¢}7.

(+)

(603)

(604)

(605)
(606)
(607)
(608)
(609)

(610)

The first equation immediately integrates to give &, = 7/ gy, for a spinor, &y, that doesn’t

depend on 6.
Using e’7° = cos(A)I + sin(#)4?, the other two equations simplify as follows.

Ounéo = o sin(6/2)e™ 14952 148 1 cos(2)e 1470 g,
- %SW/ 2)e” V2455 + % cos(6/2)e 7" 124%¢,
= 2 sin(8/2)(cos(6/2)T — sin(6/2)3°)357%,
+ %cos(@/?)(cos(@/Q)I —sin(0/2)7%)52éy

[T

= —~Y%€y.
279

1 : A . o
Opno = = cos(8/2)e "5 gy 4 sin(9/2)e T e g

1 ; 1 i
= 5 cos(0/2)e”" P55y + o sin(0/2)e™ /244
1
=3 cos(0/2)(cos(0/2)1 — sin(0/2)7%)535éy

+ %sin(@ 12)(cos(0/2)1 — sin(0/2)7%)342,

344

1. 3.4
= —— £p.
9 Y €0

35T will omit superscript (H)s in this lemma given everything is restricted to the cross-section.

60
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(612)

(613)

(614)

(615)

(616)

(617)

(618)



Since 42 and 424* commute, these two equations are simultaneously solved by

gg = V20702V 2 (619)

for a constant spinor, £. R R
éﬁ;) follows immediately because D;H)ég) = —%%ﬁfg) is identical to DEL‘H) g) = %ﬁAég)
except that 44 is replaced by —44 everywhere. U

Corollary 4.20. 1 C’hoose 42 =10y, 4% =ioy and 4* = ios. Then, the solutions to

DAH)ég) +1 274 eH for L(p,1) cross-sections are given by égj) =0 and

&) = gifor/dgilor=e2)on /25 (620)

for an arbitrary constant spinor, €.

Proof The metric is locally identical to S°.
*. Any solution will simply be a further restriction on the & H ) found in the main lemma. With
the chosen gamma matrices, those solutions are
ég:) _ e:ti902/4eii(¢1:|:¢2)01/2é((]i). (621)
For a Killing spinor of S to remain a Killing spinor of L(p, 1), it must remain invariant under
the Z, action.

ég;t) N eii902/4eii((¢l+27’l’/p)i(¢2+27r/p))0'1/2ééi)‘ (622)

Choosing the — in £ means the 27 /p factors immediately cancel and the spinor is left invariant.
-, Every 6 ) of S8 is also a 6;1 of L(p,1).

Meanwhﬂe in the + case,

ég) s gifo2/4gi(G1+ertin/por/2a  _ oib02/44i(#1+92)01 /2 2mion [P (623)

Since el072/4el(#1+62)71/2 i invertible, ég) remains invariant if and only if €2™71/Pg, = &.
However, e?™91/P = cos(27/p)I + isin(27/p)o, has eigenvalues cos(27/p) & isin(27/p), neither
of which is 1.

soe?mo/pa — 24 has no solution.
*. The only ég) on L(p,1) is 0. O

A more foundational issue not addressed in the corollary is the question of spin structures on
L(p,1). Luckily, it is shown in [54] that for odd p, there exists a unique spin structure, while
for even p, there exist two inequivalent spin structures.

Lemma 4.21. The Killing vectors on L(p,1) are spanned by

0 0 0
0 0 0
ks = tan(0/2) sin(¢; — @)7 + 2 cos(¢y QSQ) —|— cot(0/2) sin(¢py — ng)% and  (626)
2
ks = tan(0/2) cos(¢p1 — sz)? — 2sin(¢ ng) —|— cot(6/2) cos(¢py — ¢2)8¢2 (627)
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Proof. The Killing vectors of a sphere are known to be spanned by

Vrjg = (A ai )(%.
p=1

T
T ox7

. 00°

— i —
ey

p=1

From equations, to [A78]

901 _sin(¢y)  Od|  _ cos(¢) 9¢u| _ Od| 0
Ox1 ], cos(0/2)" Oxa|,_, cos(0/2)" Oxs|,_, Oval,,
0p2 _ 02 o 09 _ sin(¢s) and Oy _ cos(¢o)
Ovi|,_, Oxa|,,  Oxs|,, sin(6/2) Orq,., sin(0/2)
For 960/0x7,
2 | 2 2 | 2
9 _x3+ 0 (r3+axy\ 1 100
tan’(9/2) = 3 + a3 Ozt (Jc% + x%) B 2tan(9/2>0032(0/2) 20zl
00 cos®(0/2) O (xf+ a7}
0wl sin(6/2) Oxf \a? + a3 )
. 00  cos*(0/2) B r3 + 13 5
Coat| o sin(@/2) \ (@ ra32)
~ cos®(0/2) sin®(6/2)
= ~n(6/2) C084(9/2)20%(0/2) cos(¢1)
= —2sin(0/2) cos(¢1),
a0 _cos’(0/2) 2x3  cos?(0/2) 2sin(0/2) cos(¢a)
a3 =1 ~ sin(6/2) 22+ sin(0/2) cos?(0/2) = 2cos(6/2) cos(92),
and similarly 8—92 = —2sin(0/2) sin(¢1) & 8—04 = 2cos(6/2) sin(¢ps).
or p=1 ox p=1

Then, by computer algebra, one finds

v13 = 2 cos(¢y) cos(qbg)% + tan(6/2) sin(¢y) COS(%)% — cot(6/2) cos(¢) sin(¢s) 0

v14 = 2cos(¢1) sim(gzﬁg)3 + tan(#/2) sin(¢) sin(gbg)i + cot(0/2) cos(¢py) cos(¢po) 0

00 0p1

Vog = 2sin(¢y) cos.(<b2)2 — tan(0/2) cos(¢1) (:03((152)i — cot(0/2) sin(¢y) sin(qbg)%,

00 0p1

vgq = 2sin(¢y) sin(@)% — tan(0/2) cos(¢1) Sm(@)% + cot(0/2) sin(¢1) COS<¢2)8i2’
0
V34 = 87%
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(630)
(631)
(632)
(633)

(634)

(635)

(636)

(637)
(638)
(639)
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Then, change to a new basis of Killing vectors by

0 0 0
ki =vig +v3q = 8¢1 + % = 2%7 (643)
0 g 0

ko = v1g — 34 =

961 00 00

ks = voq + v13

= tan(/2)sin(os — )5+ 2oos(0n — dx) 3 + <ot(6/2)sin(61 — 62)5

k4 = v14 — Vo3

= tan(6/2) cos(¢1 — ¢2)? — 2sin(¢; — ¢2) —l— cot(0/2) cos(¢p — ¢2)%,

ks = v13 — v

= tan(6/2) sin(¢r + ¢2)7 + 2 cos(¢1 + 4252)% — cot(6/2) sin(¢1 + ¢2)8%52 and

ke = v14 + V23

= —tan(0/2) cos(¢; + ¢2)? + 2sin(¢; + <152) 0 5T cot(6/2) cos(¢1 + ¢2)

The metric on L(p, 1) is locally identical to the metric on the S3.

-, The Killing vectors of L(p,1) are a subspace of the Killing vectors of S3.

In this case, ki, ko, k3 and k; are manifestly well-defined on the lens space and any linear
combination involving k5 and kg is not well-defined on the lens space. ]

02

Definition 4.22 (Angular momenta on L(p, 1)). For each Killing vector, kr, on L(p, 1), define
a “conserved angular momentum,”

1
Jr = 4— f(4)0a k7 d(L(p> 1)) (653)
T Jos,

Not that these J;s are identical to the “conserved quantities” of definition

Theorem 4.23 (L(p, 1) cross-section positive energy theorem). If the Einstein equation holds,
T, satisfies the dominant energy condition and T decays faster than O(e™*") near 0%, then

E>\/J}+J2+ J}. (654)

Note that J; does not appear in the theorem.

Proof. The proof is merely substituting the ég) in corollary |4.20.1] into theorem m Since

55;) = 0, the integrand is simply

poggqﬁgH) ipacIt3420)

i(p1— ¢2)U1/2€1902/4e 1902/46— i(pr—¢2)o1/2 2 1—¢2)01/2ei902/40_16—i002/4e—i(¢1—¢2)01/2é0

= posoe €0 + P2y il
+p éTei(¢1f¢2)Ul/2 i190'2/40_ 671002/4 —i(1— ¢2)U1/2A

+ paél tol(@1—02)a1/2 1902/40- e~ i002/4,—i(¢1—h2)a1/2 £o (655)

= &) (pol + (p2 cos(0/2) — pysin(0/2))oy
+ (p2sin(0/2) sin(¢y — ¢o) + p3 cos(pr — o) + py cos(f
+ (p2sin(6/2) cos(¢p1 — ¢o) — pssin(¢p; — ¢a) + pg cos(6

2) sin(¢1 — ¢2))02

/
/2) cos(¢1 — ¢2))o3) o, (656)
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using computer algebra.
From definition [3.18 and the vielbein I've chosen in lemma [4.20]

- 1 .
f©y faymn = po, fiayos = o8 fyo2 = cos(0/2)p, and  frayos = sin(6/2)pa. (657)

Thus, equation [656 says

) (=) (=)

. AT A A A
— lpAgH Y €H
= &) ((fiyor tan(0/2) sin(¢y — ¢a) + 203 cos(d1 — 62) + fiayos cot(6/2) sin(pr — ¢2))o

+ (frayo2 tan(0/2) cos(pr — d2) — 2f(ay03 sin(dy — ¢a) + fayoa cot(0/2) cos(¢1 — ¢2))o3

poégﬁ;)TéE{

+ f(r’g)nf(ll)mn] + (frayo2 — f(4)04)01)§0 (658)
— ( Fo Faymal + fapakson + faoak§os + f(4)0akgag) 2, by lemma [4.21] (659)

Then, from definition [4.22| and theorem 4.14

0< [ (e — a9 2o, 1) (660)
L(p,1)
— dnél (BT 4 Jyo1 + J30o + J4033) éo. (661)

The eigenvalues of the matrix inbetween &}, and & are

E+/J3+ J3+ J} (662)

and hence the theorem follows. O

4.3.3 The matrix reloaded - asymptotically AdS spaces once again

The simplest metric which can be written in the form of equation is AdS itself. Hence, the
results of section 4.2 should be reproducible using theorem [4.13] In particular, the matrix in
equation [4.8| should appear via equation |4.13| as well. In this section, I'll prove this is indeed
the case.

To deal with spheres, S"2, in arbitrary dimensions, the only practical coordinate system
is the “nested spheres.” In particular,

cos(fs)
sin(fy) cos(63)
Ny ; and (663)
sin(fy) - - - sin(6,,_2) cos(f,,_1)
| sin(6y) - - - sin(0,—2) sin(0,,1)

H = p2<d62 X d92 + Sin2(92)d63 X deg + 4 sin2(92) R Sin2(9n,2)d9n,1 (%9 d(gnfl). (664)

The natural vielbein to use on the unit sphere - ¢(*) as I've called it in section [4.2|- is thus
e)? = d6,, ¥ = sin(fy)dfs, - -, elHn=1 = sin(fy) - - - sin(6,-2)d0, 1. (665)
In this frame, the most general solution to D1(4H)5H = %’yAe g on the unit sphere is [55]

2 342 n—1.,n—2
— 02772603777 /2 | On—17" Ty /25.:0 (666)

€H
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for a constant spinor, &.

It is well known - and easily verifiable - that
(Mry)rr = 6105 — 0Lk (667)
satisfies the o(n — 1) Lie algebra)]
[Mry, Mir] = 01 Myx — 61 My, — 650 Mk + 055 My (668)

Likewise, it’s also a standard result that this Lie algebra is also satisfied by

1 1

Sry = —Z[WWJ] = =5 (669)

By definition, a spinor is an object that transforms as
e — S[Ale = e85 o = emawn' g (670)

under a Lorentz transformation defined by A = ezwrr M

The main objective of this subsection is to write the A from lemma [4.5] as a product of expo-
1

nentials, e277M"” deduce the corresponding S[A] and thereby prove the spinor in lemma

is equivalent to the spinor defined by theorem

Lemma 4.24. The Lorentz transformation, A, is given by

[ cos(fy)  sin(6,)cos(f3) - -- sin(fy) - - - sin(6,,_2) cos(6,,—1) sin(6s) - - - sin(f,_s) sin(,_1) |
—sin(fy) cos(f) cos(f3) -+ cos(s)sin(bs) - - -sin(h,_2) cos(0,—1)  cos(fy)sin(hs) - - - sin(6,_1)
0 — sin(f3) -+ cos(f3)sin(by) - - - sin(B,,_2) cos(0,_1)  cos(f3)sin(fy) - - - sin(6,_1)
6 0 . — siné@n_l) cos(én_l)
) (671)
= of2Miz . i Muzn (672)

Proof. From lemma [4.5]

. a0~ .
A, =63+ (51Ap@egm. (673)

.. The first row A can be read-off from equation [663]

g%{; can be calculated from

o 2, cot*(0a)- (674)
0 2 0 9 1 04, 2cos(f,) 00,
: = = t°(0,) =2cot(0,) | ———— | =—= = ——— L
VCoxtaZ 4+ a2, Ox! cot”(0a) cot(f) ( sinQ(Qa)) ozt sin®(0,) Oz! (675)
+.. 3 2
90, _ sin (0n) O s . (676)

0xl T 2cos(f) Ot a2 4 -+ a2,

36Really, I should consider o(1,n — 1), but because the local Lorentz transformation of lemma is only
amongst the e, it suffices to consider o(n — 1).
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',gea—OwhenI<a—1

When [ = a —1,

04, sin®(6,,) 2Ty 1
dxl — 2cos() 22 + -+ 22, (677)
B _sin?’((%) psin(fy) - - -sin(f,-1) cos(6,) (678)
~cos(f,)  p?sin®(6y) - - -sin®(6,)
1
. sin(6,). (679)

psin(fy) - - -sin(6,_1)

When I > « (taking cos(6,,) to mean 1 in one of the equations below),

904, sin®(0,) z2
dxl —  2cos(6,) (_ (22 + -+ x%1)2> 2z (680)

sin®(0,) p?sin?(6y) - - - sin?(0q_1) cos?(0,)
cos(6,) ptsin(6y) - - - sin?(6,)
1

- psin(fy) - - -sin(0,_1) €08(0a) sin(foy1) -+ sin(6r) cos(frs1). (682)

psin(fy) - - -sin(07) cos(fr41) (681)

Since e®4 = 4 sin(6,) - - -sin(f,_1)d6*, T get the matrix in equation |671}
The exponential product in equation then follows from

e (0] 0)) = [5G0 omit)) (653)
Mr 141, Migq 142, -+ only acting non-trivially on rows & columns with index > I and induction
(on n). O
Corollary 4.24.1. The e from lemma[].6 agrees with the ey from equations[517 and [666,
Proof. By definition, A = e%Miz ... efn-1Mu-2n-1 means
S[A] = 92771 /2 L Oy IR 2 (684)
Hence, the constant spinor, €y, in lemma goes to
S[Algg = 7% /2 gfum T 2 (685)

upon the change of frame.

€p is an arbitrary constant spinor, so I can redefine it as g = \/LE(I —v1)ép for an arbitrary
constant spinor, &g.

Since I and v' both commute with ¥4, I can push I —~! past all the matrix exponentials until
e?27*7'/2 Then,

AT — 41) = (cos(02/2)1 = sin(62/2)7*y") (I =) (686)
= (I — ") cos(6y/2)1 + ~'sin(6y/2)y* — sin(6y/2)~* (687)
= (I —y")(cos(6;/2)I — sin(6y/2)7?) (688)
= (I — "), (689)
o S[AJeg = %(1 7 el R L e T (690)
1
—2(1 yHen by equation (666 (691)
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e? and eq are unchanged, so the e"/2 factor in lemma is unchanged.

Next, consider the z/~; term. To view ¢, as a well-defined spinor, ! should be a vector. Hence,
upon the change of frame, ! should go to A’ ;z7.

From equations and [663)], it follows by inspection that A 27 = p(1,0,---,0)".

. z'yr goes to py! upon the vielbien transformation.

Putting all the different pieces together, I get

1

e = ——— (I —ipy e 2(I — yMep. 692
K 2(1—p2)( pr)eT (I =7 )en (692)
From lemma [4.4]
L{ 2 4p* (1+p)?
== 1 = . 693
‘ 2<1—p2+ Ta=r) 2= (693)
S 0=p(1+2")+20+1—2¢". (694)
—2+4+ 4 —4(1+2e)(1—2e") —1+2% 1—ge7
2(1+ 2em) 1+ 2e" 1+ g5e™"
2e" p 1 1
1-pp=—2  and L= (1 - —e—") . (696)
(14 Ler)? VI—p2 V2 2
Substituting these relations back into [692] I get
1 1 : i 1 .
e g (177 ) R e = 5 (1 e ) A = e (69
= 2P ([ — 4 Ney + ée_’ﬂPfre”Ot/Q(I —Nen (698)
= e’"/QPf <e”0t/2 — ie’”ot/z) eg + %e’"/QPfr <e”0t/2 + ie’”om) €H, (699)
which is exactly the result in theorem [£.12] O

5 BPS inequalities

In this section, I'll apply theorem to various supergravity theories by appropriately choos-
ing A,. In particular, A, will be chosen so that the resulting V,, generates the local transfor-
mation of the gravitino field, 1, in the supergravity, i.e.

0 = Ve, (700)

for transformation parameter, ¢.

In a supergravity context, positive energy theorems typically go by the name BPS inequalities
and I will adopt this terminology.

The presence of A < 0 necessitates considering not just supergravity, but gauged supergravity.
I will focus on N = 2 theories in four and five dimensions in this work.

Both theories contain Maxwell fields. For convenience, if not physical significance, I'll split the
Maxwell field as follows.

Definition 5.1 (Electric and magnetic components). Given a Mazwell field, F,,, the electric
and magnetic components will be defined as E; = Fro and Fyj respectively. Likewise, any
current density, j, will be split into electric charge and current as j* = (p, j').
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Note that the split is with respect to the vielbein indices, not the coordinate indices.
It is also natural to consider electric charges in the presence of Maxwell fields.

Definition 5.2 (Electric charge). The electric charge, q., is defined to be
1

Qe = T
47T oo Tt

<, (701)

Corollary 5.2.1. When the metric is written in Fefferman-Graham form,

1
Qe = — EdA. (702)
41 Ooo Dt
Proof. Writing F' out in a vielbein basis,
G = = ;(*F) eft N N etn? (703)
€ 47.‘_ 8002t (n _ 2)' K1 fn—2
1 1

T 4r NS 2(71——2)'EVtw1~~~un_zFW)GM1 ARRERAY- i (704)

I've been working in a vielbein where € L 3, and e! L 3,. Hence, 0,%; L €°, e!. Then,

1 1

G= g | gEmnt FUE A A (705)

= % . co12.m_1FOLe* A - AT (706)

_ i . FOlqA (707)

= % - ErdA, (708)

as claimed. O

In 4D, it is also possible to have magnetic charge, an essentially topological effect due to the
inability to define a global one-form, a,, such that ' = da. However, the choices of A, in the
subsequent sections will explicitly involve a,, as part of gauge covariant derivatives. On it’s own,
this may not be an issue. Changing from one patch to another imposes a transition function,
a — a + d\; likewise performing a phase transformation, e — e*¢ keeps the result consistent.
Unfortunately, such a (pointwise) phase transformation in inconsistent with my effective choice
of g, boundary conditions. Hence, I must restrict to electromagnetic fields sourced by a global
one-form, a,. Furthermore, even if this problem could be surmounted, I would still encounter
the more practical problem that Fl4g’s decay rate for magnetically charged solutions is too slow
for the requirements of section [3.1}

5.1 4D, N = 2, gauged supergravity
The bosonic sector of 4D, N' = 2, gauged supergravity is described the action,

1

5= Tor

/ (R—2A — F, F®*) AV (g) + Soe., (709)
M

where F, = Dya, — Dya,, for some locally defined gauge field, a,. Note this is nothing but

Einstein-Maxwell theory with a cosmological constant. Strictly speaking, Soter ~should be
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zero for the supergravity theory or for Einstein-Maxwell theory, but, for completeness, I've left
open the possibility of having further matter fields. I will however assume S%E couples to

the Maxwell field at most through a term of the form, [, j%a,dV(g), where a, is a (local)
gauge field.

The equations of motion in this theory are well known to be

1 1
Rab - §Rgab + Agab - 87TTab =2 (Fachc - ZgabFCchd> + 87TT;;her, (710)
DyF* = —4xj°, (711)
D Fy) =0 (712)
and whatever equations the fields in ST = solve.

It is known that in this supergravity theory, the gravitino, v, transforms under local su-
persymmetry transformations as

1 i
0% = Due = 7Fup™ e +iaue + 5,8, (713)

for a given spinor parameter, €. Hence, I will choose

1 ] 1 1 .
Ay = —1 vV Py Fiad = QEWOWI% 1 1y il (714)

Theorem 5.3 (4D, N' = 2 supergravity BPS inequality). If the equations of motion hold,
Tether, p decay faster than O(e™""Y7) near 95X and T > /T Tother! + p2 and By, aq
& Iy decay fast enough for the integrals below to be convergent, then theorem [3.19 implies

n—1 _, _ / n—
Q(E) = 5 e /8 . pM&'k’}/MSk L*f(()) d 2513'
o0 ~it

— 2/ E&pe,dA — 2/ Fggsliﬁylvgy?’sde + 2i/ aAsblvAsde (715)
Ooo Xt Ooo 2t Ooo 2t

=2 / ((V1e)'V e + 4n T . eM0vue — dmpe’ye) AV (716)
3t

>0 (717)

Note that when p = 0, the T@fbher inequality is automatically satisfied if TP satisfies the
dominant energy condition.

Proof. T'll begin by validating the assumptions of definition for the connection chosen in
equation [714] From equation [714]

1 1 .
Ar = §EJ707J'71 - ZFJK'YJK'YI +ia,1. (718)
First, I'll check
1J 1 I1J_ 0. K 1 I1J_ KL : 1J
VA = SEry I v = g Feey T s ey (719)
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is hermitian. The 1st term simplifies as

1 1
§EK,YIJ,}/O,YK,}/J — _§EK71J707J7K _EK,}/IJ,)/O&‘KJ (720)
1
= 5By vy = By (721)
= —Eyy'y"y = By’ (722)
=E(v'v" = +") (723)
=—E"Y, (724)
while the 2nd term simplifies as
1 1
_ZFKL,}/IJ’YKL/YJ — _ZLFKL/VIJ(’VJ’YKL _ 26LJ7K _|_ 25KJ’YL> (725)
1
= SFicy'y " = Fpey™a " (726)
1
_ §FJK(,Y]JK _ ST K L §TET 9nTTK |y oSKINT _ ogKIL Ty (727)
1
= _éFJK’YIJK- (728)
Substituting these back, I get
1 .
VIA; = —E14° — §FJK71JK +iayy". (729)
1 . 1 .
(Y AN = B0+ §FJK,YKJ[ —iay = —E10 - §FJK,YIJK FiaT =417 Ay (730)
~.vI7 Ay is indeed hermitian.
Next, consider M for this example. By definition,
M = 47Ty, v + v DrA; +i(v' A + A}VI) — A;'YIJA‘] (731)
1
= AT Ty + By Fun™y = JnonE Fupy ™y 4" DiA,
Fi(yTAp + AlyT) — Al A, (732)
Consider this expression term by term.
Fy” W’YO’VM = FOIFM”YOV“ (733)
= —B'(=Ei(y°)* + Fsn"y) (734)
= E'E/l — Fr B’ (735)
1 vp 0.1 1 72 0\2 1 I 1 1J
—Z'f](]#F pr’)/ v = ZF FHV(’Y ) = _iE E[.["‘ Z__LF F[JI. (736)
YDAy = Di(v" Ay) (737)
1
= D; <—Elfyo — §FJK7”K + iayy”) by equation [729 (738)
1 .
= —D;(E")" — §D[1FJK]7”K +iDyany"’ (739)
= —drpy® — 0+ %FIJVU by the equations of motion. (740)

70



1 1 |
VA= S BNy v = S Faey'y o +iary!

2 4
= —%EJ’YO’YI’YJ - %lFJK('YJ Kol — 2804 4 26547 )y + iagy!
= %EJVOVJVI% + E°6" Ay + Z%FL}’)’U — Frv'y” +iay!
= —gEﬂOVI + B’y + ZF]]’YIJ — Fryt +iay!
= —%EI’YO’YI - %FIJ’YIJ +iary’.

’}/IA[ + A}’}/I = ’}/IA] — (’)/IA[)T
1 1 . 1 1 .
= —- B’y — < Fa" +iay — ( SEA'Y = < Fy’ +iany!
2 4 2 4
1

:——F IJ'
5 1J7

The most tedious term to simplify is

2 4 2

1 1 . 1 .
AHUAJ = <—EJ717J70 + = Fyyy™ — ICLII) <—EI O — —Fry™M + 1aL7IL>

1 1 1
— _§EJEIVI’7J70’YO o ZEJFLM’VIVJVO’YILM + §EJCLL7[7J'70’}/IL
1 1 1
— ZEIFJKW’IVKJVO — gFJKFLMVIVKJVILM + ZFJKCLLWWKJV[L

. i
+ 1a1E170 + ialFLMVILM + aIaLylL.

Consider each set of similar terms in this expression individually.

1 1 1
—§EJE1717J7070 = —éEfEﬂIVJ = §EIEII-

1 1
- ZEJFLM’YI’YJ’VO’YILM - ZEIFJK’YI’YKJ’YO

1
= B E i (—y'y T = o1y

1
_ _E]FJK,YO(,YI,YL,YLJK + 251L7LJK _ ,YI,YJK)

4
1
= 7B En (=" + 29—y

1
— §E]FJK70(_’YI'7JK _i_/yI/yJK_’_&IJ,yK . 5IK/VJ)

= E'Frnyy’.

i . 1 . .
§EJGL’YI’YJ’VO”YIL +ia B’ = —QEJCLK’YJ’YI’YIK’YO — 1B agd” v + ia By
— iEIa/J(’YI’}/J o ,.}/IJ),YO + iCI,[EI’)/O
= —iE;a;6"9° 4+ +ia; B'A°
=0.
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(741)
(742)
(743)
(744)

(745)
(746)

(747)

(748)

(749)
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1
— —Fyx Foyyry™ 7y (762)

8
= —éFJKFLM(vKJ vr = 205y 4 2075 )y (763)
= _éFIJFKL'VIJ'VKL - %FIJFKL7J71KL (764)
= _%FIJFKL(’YIJKL + 51K7J7L . 51L7J7K . 6JK,YI,7L + 5JL,YI,YK L §IKSIL _ SILGIK

+ 4,YJIKL o 45JI,YKL 4 46JK,71L - 45JL,YIK) (765)
=0~ éFIJFILVJ’YL + %FIJFKIVJWK + éFIJFJL’yI’YL - %FUFKJVIVK — %F”FU[

+ éF”FJII —0+0— %FUFJL ~E 4 %F”FK Tyl E ag 417K — 0 whenn =4 (766)
= %FUF”I — iF”FU[ —0-0 (767)
_ i FU R (768)

1 1
—Frapyy™ v + QCLIFLMVILM

1

= iaIFJK(—m"K'y” +29175) (769)

- iaIFJK(—VJKm“ + 207 M = 205 Ty 4 291 (770)

N %GIFJK('VJK’VI + 2957 4+ 41 (771)

_ %GIFJK('YJKI — ORIy G K oy KIT oK T | o5kl d | A TTK) (772)

=0. (773)
alaLVIL = 0. (774)

Substituting these results back up, I get
1 1
Al A, = 5EIEIJ + E'Fr A0 + ZFU Fyl. (775)
Substituting this expression, and the others above, into the earlier expression for M says

1 1 i
M = 4r T3 " + B'Efl = Fiy B/ = SE'Bil + 2 F" Fiyl — dmpn + %Fm”

i 1 1

- %Fm” — BB — B'Fipy’y’ = {FV Ryl (776)
= 47TT(§):Lher707“ — 47 pry° (777)
= 4m(Tge"" I + Tgp" ™y = p”). (778)

This matrix’s eigenvalues (e.g. found by computer algebra) are 47 (Tgther £ /Totherotherl 1 52),
Hence, M is non-negative definite by the condition I've assumed on T and p.

The ||M]|o decay condition assumed in definition 3.1 corresponds exactly to the decay conditions
I'm assuming for Tg:"" and p.

The ||Af||o decay condition assumed in definition is merely required for the boundary
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integrals in equation or theorem to be finite and is stronger than the decay required
for convergence properties in section 3.1}

Finally, there is the assumption regarding 7/ A; = —Al4!. This assumption is used only in
theorem [3.10] when proving G’s surjectivity.

From equation and the computations leading to it, one can see that A exists. In particular,
it is the same as Aj, except Fj; and a; are replaced with —F7; and —a; respectively.

These sign changes don’t affect decay rates or v/’ A; being hermitian.

.. The assumptions of definition [3.1] hold.

Having established theorem |3.19 is valid in the present scenario, it remains only to simplify
the integrals there.

oler Jo s, PiEryMer/t* flo) A" is unchanged and the [;, dV integral follows immediately

from equation . The other boundary integrals require finding 7'y4 A4, + Aly4~1,

1 1 .
'ylvAAA = 717’4 <§EJ707J7A — ZFJK'YJK’YA + 1aAI) (779)
1 1 .
= §EJ70717A7" Ya— ZFJKVI’VAV" Ko g +iaay'y™ (780)

Consider the 1st two terms individually.

1 1
—E ' Y v = = En 'y v e — By 6 4

781
5 5 (781)
= E°y'y) — Ex’y'y? (782)

= B’y + BEay®y't — Byt (783)

— B (784)

1 1
— 3 Frey' v = = Faey (7t = 26705 + 205y )y (785)
1
= S Fuy" 4 Fary'y'y (786)
1
= Fuay' 'yt + 5 Fapy' v + Fay'y'yt + Fapy'y Py (787)
1
= =5 Fapy'y " (788)
= —Fay'y?y, (789)
Substituting these two expressions back,
Yyt As = —Ei7° — Fosy'y2y3 +iaayinyA (790)
S s+ Al = A+ (AT (791)
= —E17° — Fiy' "% +iaay' v+

(—E° — Fasy'y?y® +iaay'y?)T (792)
= 2(—E1y° — Foay' 4% + i@A71’VA)- (793)
Finally, substituting this into theorem completes the claimed result. U

Corollary 5.3.1. If fo)oa = 0 and the extrinsic curvature, Ky, of ¥ is less than O(e™") near
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Oso X, then

n— 1 - = n— —
Qe) = 5 © / puceyM ey /v fo) 4" 2w — 2/ EyérerdA (794)
800& 800275

= 2/ ((Vie)IVle + 4nTY  eMovue — dmpe’yPe) AV (795)
p

>0, (796)

i.e. under the extra assumptions made, the magnetic and gauge field boundary integrals cancel.

Proof. Start by re-writing the magnetic integral as

1
/ Fosel /2y erd A = —/ Fapein'y4Be,dA (797)
BooEt 2 aoozt
1
== / I Fykely7Ke dA. (798)
2 Jos,
I've assumed f(g)oo = 0. Hence, to leading order eI = 5“ h)z

o Py = eV e Fy = e o (Djax — Ohaj) = D ax — Dg})cu.
The decay conditions I've assumed mean only leading order contributions survive the integral.

/ F23€L’71’)/2’735kd14:\/ lIDS ( )Ek’}/IJK dA (799)
BwEt aoozt
:/ ZIDS (agel~r1"e,)dA
Do Xt
- / lrax (Df,h)(ek)wfmek+ek7”KD(" )dA (800)
oo Tt

The covariant derivatives on 3; and M are related by Dgh)

on spinors.
*. The assumed K7;; decay implies Dgh)&tk = Djey to leading order.
". By the Killing spinor equation, Djep = —3577€; to leading order.

ex = Dier+3 K577+, when acting

. 1 .
h h 1
g D(J)(gk)wIJng+5271JKD5)5k N (—5%'51@) AIE g, 2%7]”(7 e (801)

i 1
= —§€Zwy” Kep — 5827”’(%@ (802)
— —iel 1%y (803)

Meanwhile, for the other integral in equation m if / is the metric on constant ¢ and r surfaces,
then by the same logic as lemma (3.6},

/ lIDf,h)(aKglfleKek)dA: D (lla el K )dA (804)
Do Xt

B0 St
=0 by Stokes’ theorem. (805)

Thus, equation [800| reduces to

/ Fzgeltvlfyzfy:ggde =0+ i/ llaKglt’leede = i/ aAe,t’yl’yAgde. (806)
800215 8oozt

Boo Et

*. The last two integrals in equation precisely cancel. O
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5.1.1 Toroidal boundary
Consider again the toroidal boundary, fo) = —dt @ dt + 0,5 d0* ® der.

Theorem 5.4 (4D, NV = 2, toroidal boundary supergravity BPS inequality). If the equations
of motion hold, T decays faster than O(e™®") near 0%, T > /Tomeroberl 152 gnd
(M, g)’s spin structure is compatible with having periodic spinors near Ox%; then

E > IuJ4 = /I.72 + T, 05, (807)

Proof. Equation [328| applies once again as does the calculation in theorem to show

n—1
2

e_r/ pMék’YM&c\/ oy d" e = 8mel Py (EL+ Jav°y™) P e,. (808)
Boo St

It remains to calculate the electromagnetic boundary terms in theorem [5.3]
The chosen f(o) suffices to apply corollary [5.3.1] so only the electric field integral remains.
However, equation [328, implies

Eren = el PP Preg = e"eln P Prey = 0. (809)
.. The electric field integral vanishes and the situation reduces to theorem U

5.1.2 Asymptotically AdS

Theorem 5.5 (4D, V' = 2, asymptotically AdS supergravity BPS inequality). If the equations
of motion hold, T .. decays faster than Oie_?”") near 0n X, TR > \/TgtherTgtherl 4 52
")

Ar = %EJ’YO/YJ’Y] — iFJKWJKW +iarl decays®| faster than O(e™%/?), E; decays as O(e™?"), a,
decays as O(e™) and Foy decayd™ as O(e™"), then

_ i
EI —iPpy! + §J1ﬂ°71 T+ K%y — ¢A° (810)

1 a non-negative definite matriz.

Proof. The proof is essentially just substituting the present data into theorem [5.3] and noting
that corollary applies for the present boundary geometry.

The py; boundary integral in equation is identical to what I've already analysed in theorem
4.8 Hence, I immediately get

n—1 _, B e
e / pMéwM&k\/ oy d"
2 oo Xt

— 8mefe /2 (EI — 1Py + %J]J’YO’YIJ + K17071> 1’2, (811)

37This is a weaker decay condition than in definition The decay there ensures the boundary integrals in
theorem [3.19| are convergent. However, I am dealing with that issue separately with specific decay conditions
on Fq, Fy3 and aa. Hence, I can assume this weaker decay condition, which suffices for the analysis is section
@— in particular, lemma
8This decay is in fact automatically implied by the assumed decay on a4.
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Next, for the electromagnetic boundary integrals, first consider £xe;. Since &pey is a Lorentz
scalar, I can evaluate it any frame. Thus, by lemma [4.6]

1

EpEr = T ele V(T — iy )OI — im gy ) e (812)
=7 —1p2 686_”%/270(1 + iz (I — ix{ﬂ‘])ewomeo (813)
=1 —1p2 586_”0”270(1 + x;xﬂlv‘])e”%ﬂeo (814)
=7 —1,02 586’”0t/270([ — pZI)ei'yot/Qeg (815)
= el ™1"/2, 061 2 (816)

.. The relevant integral in equation is

—2/ E&epdA = =2 E15$e’”0t/270e”0t/250d14 (817)
8oozt 600215
= —2efe "2 / E1dAy e 2, (818)
Ooo St
= —8mefe "2q A0 2. (819)

Hence, from corollary [5.3.1} I get

. 1 .
8mele /2 (E[ —iPy + §JU707” + K%y — qevo) o1’ (820)
is non-negative definite. By the same logic I used in section [} I can conclude the matrix in
between efe """/2 and e"’*/2¢ is non-negative definite. O

5.2 5D, N =2, gauged supergravity
The bosonic sector of 5D, N' = 2, gauged supergravity is described by the action,

1
= R —2A — Fa Fab _— abcdeFa Fc . dVv Sother 821
167 M ( b 3\/§6 bl'cd® (g) + matter? ( )
where %74 is the Levi-Civita tensor and F,, = D,ay — Dya,, for some locally defined gauge

field, a,. This theory could also be described as Einstein-Maxwell-Chern-Simons with cos-
mological constantlﬂ Once again, S°e should be zero for the supergravity theory, but for
completeness, I've left open the possibility of having further matter fields. I will again assume

Sother couples to the Maxwell field at most through a term of the form, [ 1 J%aadV(g).

matter

The equations of motion in this theory are well known to be

1 1
Ry = 5 Rgas + Agu = 87T = Q(Fachc — 19 F, Cd) + 8T, (822)
1
DyFb = —4gj* — —_gabedep B 823
b J 2\/§ bel'd ( )
D[anc] =0 (824)

39 Alas, this is just as big a mouthful as saying “bosonic sector of 5D, N = 2, gauged supergravity.”
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Sother

o ey Solve.

and whatever equations the fields in

It is known that in this supergravity theory, the gravitino, v, transforms under local su-
persymmetry transformations as

0, = D,e — V30,8 + =7,e, (825)

1
—=F, 7"y, — vYE+
44/3 o 2\/_ Fuy 2

for a given spinor parameter, €. Hence, | Will choose

1
A, =———F,~" A +iV3a,l 826
n 3 oV Y T 2\/— Fu ul (826)
1 1
= —— B0y, — ——Fp 4" A +iV3a,l 827
2\/3 77 T 4\/§1J7 Y — 2\/—u7 u ( )

This time, I get the following BPS inequality.

Theorem 5.6 (5D, N' = 2, supergravity BPS inequality). If the equations of motion hold,
T  decays faster than O(e~™=V") near 8OOZt, TOther > JTober el 4 302 /4 and one uses

other

the 5D Clifford algebra representation ’wher@ vt = 20914243 then theoremm implies

n—1 _, _ n—
Qe) = 5 e /a § pM&Tk’yMéTM/L*f(O)d 2r
oo &t

—V3 E&rerdA — —/ Fup Ezﬂ A8 dA
8002,5 oozt
+2iv/3 aqeiy e dA (828)
Doo Tt
= 2/ <(V15)TV15 + 47T et voy.e — 2mV/3pety 5) dVv (829)
3t
>0 (830)
Proof. Again, I start by checking the assumptions of definition apply. From equation [827]
1 1 1 1

A= ——=Ey' "y — —=Fixy v — —=E1° — —=Fry’ +iV3a;I. (831
I 2\/§J’Y’Y”H 4\/§JK7 V1 2\/51’7 2\/§IJ7 I (831)

1J K_0 1 1J_ KL

1 1
YAy = ——=Fx - - ——E
VA Ngvvvv VAT 2\/—ﬂv

—_ FertAE 1030 832
2\/— JK7Y Y ﬂ ( )

The first term snnphﬁes as

2\/_ eyl K0y, — 2\1/_ 1Ay 0 (833)
= 2\1/§EK7 o G A \%EKYU(SKJVO (834)
= ?Eﬂl’y"v“ - %EJVU’YO (835)
_ ?EJ(—(V‘]I 40 - %EJ,YIJ,}/O (836)
_ f BI04 Q}Eﬂ ) (837)

40Tn 5D, there are two inequivalent, irreducible, Clifford algebra representations. They can be constructed
by taking 7%, v!, 72 & 3 the same as in 4D and then defining v* to be 4°y!7243 or —y%y'42~3. In the present

context, I have the freedom to choose which representation I use.
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while the 2nd term simplifies as

1 1
_mFKL,yIJ,yKL,}/J — _mFKL,yIJ(,yJ,yKL o 25LJ,YK + 25KJ’YL)
V3 1
_VYop LK _ - po I K
1 JKY Y \/§ JKY Y
Substituting these back, I get
V3 V3 V3 .
7IJAJ = _TEI,YO + TFJK,YI,YJK _ TFJK,YIJ,YK + 1\/5%71(]‘
V3 V3 V3 .
(,YIJAJ)T _ _TEI,YO _ TFJK,YKJVI 4 TFJKWK,YJI o 1\/5(”7(]1
V3 .. V3
— _TELYO + TFJK(PYIP)/JK . 2(5KI,YJ + 25JI,7K)
3
— \/T—FJK(,}/IJ,YK — 25Ty 19§kt 4 i\/gaJVU
V3 V3
= _TEI,YO 4 TFJKVIVJK 4 \/gF]J,yJ
3
- % JK”YU’VK + \/§FJ17J -0+ i\/§afy”
V3 V3 V3 .
_ _TEI,YO + TFJK,YI,YJK _ TFJK,YIJ,YK + 1\/§aJ71J
=~ A,

Hence, v’/ A; is indeed hermitian.
Next, consider M for this theory. By definition,

3i
M = dnTo,n*y" + " DiAs + 5 (v Ar + Aly') = Ay A

(838)

(839)

(840)

(841)

(342)

(843)

(844)
(845)

(846)

Following the same analysis as in the proof of theorem [5.3] the energy-momentum term can be

expanded to get

1 1
M = dr 5"y "y + S B Efl + 2FY Fi L = Fiy B/ + 4" DA,

31
+ 5(71141 + Aly) — Ay A,

Individually consider each to the terms containing A; in this expression.

1 1 1 1
I 1.,J.0 1.,JK 1.0 1.7
Aj=———FF - —=F —-—=F - —=F
Y I 2\/3 JV Y 4\/§ JKYV Y VI 2\/5 Y 2\/§ v
+iv3ayL.
The 1st and 3rd terms combine to give

1 1
. Er (7 A A0 4 ATA0) = — Er(—~"~ s 4 ~1)A0
e (Y'Y v+ ) W (=" Y+ )y

1
= ———Ei(v/ vy + 29767 + )P

23
1

— E I 07
N

78

(847)

(848)
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while the 2nd term is

1
—4—\/§FJK717JK% = 4\/—FJK7 (vey™ =265 147 + 267 4%)

— F K_2KJ+2JK
4\/—JK<’V vy Yy)

=0.
That leaves
I
A — F T+ iv3ay!
712\/—177 2\/—1J'Y I -
AR ==y IAI)
= — — —Fy +1V3a )
( 2\/— ﬂ ’Y 2\/— IJ’Y Iy
1
= —E — —iv/3a
2\/§ 17 7 2\/§ IJ’Y 17
3i iv3
. E(VIAI + Alyh) = —TFJJVU
From equation [840)
V3 V3 V3 .
YDAy = Dy <— 5 E'Y’ + TFJK'V — TFJKVUVK +1iv3ay"
V3 V3 V3
— _TDI(EI>70+ 4 D (FJK) I JK 5 D](FJK>71J’YK
+ i\/gD](aJ)’)/IJ
The 2nd and 3rd term combine to
V3 V3
TDI(FJK)’YI’Y‘]K - TDI(FJK)’Y”’YK
V3 V3
= LD (Fyie) (o7 = 8179 4 5157) = LD (B (€ — 6501 5517
V3 V3 V3 V3
= TD[[FJK]’}/IJK — 7D1<F]J)’)/J — TD[]FJK}’)/IJK +0-— TDI(FJ[)”}/J
V3
= —TD[IFJK]”YUK
=0 by the equations of motion,
while the 4th term is
: W3 W3 IJ
1\/§D1(@J)’Y = T(DICLJ - DJCU)”Y = TFIJ’Y
and the 1st term is
V3 I 1 SIIKL
—TD [(EN)A° = —27r\/_p7 4 FriFr® by the equations of motion.

1 iv/3
DAy = —27v3p7° — Z€IJKLFIJFKL’70 + TFIJ'YIJ
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(852)

(853)

(854)

(855)
(856)

(857)

(858)

(859)

(860)

(861)

(862)
(863)

(864)
(865)

(866)

(867)

(868)



The most tedious term to simplify is again A}yl TA;.

1 1 1 1 .
A7 A, = (——2\/§EJ71707J + —4\/§FJK717KJ — —FEn’ + —=Fry - 1\/§a11)

2V/3 2V/3
X (—?El”yo + \/TgFLM’Y[’YLM - gFLM’YIL’YM + i\/gaL’YIL> (869)
1 I 0.0 L 0 J I LM | L 0 JIL. M
= BBy = g EaFuyy T A B F ey
— %EJaL’yI’yO’yJ’yIL — éEIFJK%’YKJ’YO + 1—16FLMFJK’YI”YKJ’YI’YLM
— %FLMFJKWVK Tyt iaLFJmva Tyt iEIEI(VO)Q - éEIFLMVOVIVLM
+ }lEIFLM’YO’VIL’VM - %EIGL’YO’VIL - iEIFIJ’YJ”YO + %FLMFIJ’VJ’YI’YLM
- %FLMFIJ'YJ’YIL’YM + %aLFIJ'YJ’YIL + %GIEI'YO - %CLIFLM'VI'VLM
+ %aIFLMVILvM + BaIaLfyIL. (870)
Consider each set of terms with similar fields separately.
3arary’™t = 0. (871)
1 0.J . IL 1 0. IL 31 1.0
- §EJCLL'VI'7 oA §EIaL'7 YU EGIE v
= %Efaﬂo(’yml AT T 351 T) (872)
_ %EIGJWO(—’YIVKVKJ _ 25[K,YKJ _ 7IJ + 351J]) (873)
- %Elaﬂo(?w] v =29 — 41 36 T) (874)
_ %Elaﬂo(3(7“ —61T) = 341 4 3577 )) (875)
= 0. (876)
EEJEIWOMO + %EIEI(WOP = —%LEIEJ’VI’VJ + iEIEII (877)
_ % BB (878)
1 KJ_IL 1 J IL 31 I_ LM 31 IL_ M
ZaLFJKVIW v+ §aLFIJ7 7= ZaIFLM'7 v+ EaIFLM'V Y
= ;lazFJK(mK Ty 295 = 391y 67170 5) (879)
— ;la[FJK (Y yr =285 v 4+ 267 ™)V + 29547 = 3y 7R+ 697745) (880)
= iaIFJK (377" = 6974 = 3yI77E + 67177 5) (881)
_ %GIFJK (/5T — 6T T GHII g T L 9§ IK AT 95 TL K _ JLIK 4 LTI I
+ 2y — 26K AT 2554 T) (882)
= 0. (883)
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J’YIL/YM

(384)

(885)
(886)

(887)
(888)

(889)

1—16FLMFJK%7KJ717LM - %FLMFJK%VKJVILVM + éFLMFIJVJVIVLM — ;LFLMFIJ'Y
= %FIJFKL( — Y AN A 4 2y MY — 29T AR — an T TR
= %FUFKL( — (VP — 205 "+ 265 )M
(VK Ly — 265 ot 4 268, AF )My o TIAKL g a I KL 4,YJ51K,VL>
= %FIJFKL( — Y M 2y KM T — 2y TIARE — 4T TRAT)
_ %FIJFKL(ZL’VKL/YIJ + 4,YL,YK,VIJ o 6,YKL,YI,YJ o 8,YL,}/KI,VJ o 2,YIJ,YKL + 4,YIJ,YKL
_ 47J(51K7L)
_ %FIJFKL( AT KL gl K LT g LK 47J§IK7L>
— }LFIJFKLP}/IJ/-YKL . %FIJFIK ,}/K,_YJ - }LFIJF[K ,}/J,}/K
_ EFIJFKL(’YIJKL + 5IK7J7L o 5IL,YJ7K . 5JK7]7L 4 5JL717K 4 5IK6JLI o 51L5JK])

3
+ Z—lF”FUI

4

1 1
— ZLFIJFJKglJKL7172'YB’V4 + ZLFIJFIJI

1 1 3
_ _FIJFKL’YIJKL—i_FIJFIK’yJ’YK—'—§F]JFIJI+ZFIJFIJ-[

1 1
= —ZF]JFJK&‘IJKL,YO + _FIJFIJI as Ilve ChOSen ’74 _ 70717273‘

4

— éEJFLmﬂOvJVIvLM + EEJFLM”YI'VO”YJ’VIL'VM — %EIFJK'VI'YKJ'VO
— éEIFLMVOVIVLM + iEIFLMVOVILVM _ iEIFIJVJVO

- %EIF g e 70 e e e G o 120 e e G B S s R M U B G o A e
WDV IEATS 70)

_ éEIFJK,yO(,yL,yI,yL,YJK = D I K LK T TK o 1K 2(5[J,YK)
1

= —ErFig° (= ' eyty’ = 26 4 7R

8
N L 251J7K)

8

8
1

1
_ —EIFJK’YO( N L e 251J7K)

4 QPYIPYLP)/LJ’YK +451L,VLJ7K o 2’YI’YJK

_ —EIFJK’YO( — 61K 651K 65T AT 6K 65T 4 6K TyT 1 25IJ,YK)

8
= B! Fryy7.

Substituting all these expressions back,

1 1 1
Ah”AJ = §EIEI] + BT Fp Oy — S FpFye 5040 + — Py
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4

(890)
(891)
(392)

(893)

(894)

(895)
(896)

(897)

1
_ _EIFJK,YO(ZL,YI,YJK L Y P2 I BN ) W NV L ) W0 e 25IJ,YK) (898)

(899)

(900)
(901)

(902)



That, along with the previous calculations, in turn implies

1 1
M = 4nTgthy " + 2E’E I+ 4F”FUI Fr B4y — 2m/3p7° ”KLFUFKW
iv3 iv3 1 1
+ TFIJ - TFIJ - EEIE[I - EIF[J'YO’YJ + ZF]]FJKEIJKL’)/O
1
- FUE, I (903)
= 47TT°ther — 21V/3p7° (904)
— AT ] + 47TT§;hew A —2mv/3p7°. (905)

It can be checked, e.g. by computer algebra, that M’s eigenvalues are

A7 (Té)(;;her + \/T(S)ItherTé)therI + 2,02) . (906)
Thus, the condition I've assumed on 79" ensures M is non-negative definite.
The ||M]|o decay condition assumed in definition[3.1]corresponds exactly to the decay conditions
I'm assuming for Tgt"" and p.
The ||A;]lo decay condition assumed in definition is merely required for the boundary
integrals in equation or theorem to be finite and is stronger than the decay required
for convergence properties in section 3.1}
Finally, there is the assumption regarding VA = fl I Just as in the proof of theorem .
equation M implies A; exists and it is identical to AI except Fr; — —F;; and a;j — —ay.
Just as in theorem [5.3] decay rates and v/ A; being hermitian are unaffected by this change,
meaning the assumptions of definition hold.
Having established theorem |3.19 is valid in the present scenario, it remains only to simplify
the integrals there.

e [ s ngw Mep\/t* foy "2z is unchanged and the [;, dV integral follows 1mmed1ately

from equation . The other boundary integrals require finding v'v4 A4 + AJr

I/YAAA
271714(——1 EIVIVOVA——l Froy"ya — ! —— B — —=Fary’ +1\/_aAI) (907)
2v/3 4\/5 2v/3 2\/_
1
1.A 1.0 B_0 1. A 1 B
= ——F —F - —F
2\/— Exy' Py v iya — 2\/— B’Y’V”Y’V’YA 2\/3 IBY Y YV A
1 1 1 1
o F 1. A_BC ——E 1., A0 F 1., A1 F 1. A B
—4\/—307’77 YA — /3 AT Y —2\/§A1’Y”Y’Y —2\/§AB’Y’Y”Y
—1—1\/_a,47 v (908)
Again, consider terms with the same fields separately.
1
A 1.0 1. A B0 1.A_0
~ 1l ——F
2\/— 'Y’Y'Y'Y’YA 2\/— BY VYV Y VA 2\/§A’Y”Y’Y
V3 1 1 1
=-S5 B+ o =E Pyiya+ —=Epy 617" Eqy'y*y° 909
1y 2\/—37777% B0 A ey (909)
\/3 V3 1 1
5 B = G Bav it e Bay T - By (910)
3
= —%_Ewo. (911)
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1 1 1
W Fipy vy yPrya — FF oY VAP va — 2\/—FA17 Ayt — 2\/§FAB71'7AVB

1 1 1

- ____F  _Fpert C 959 4B 1258 ,7C) — ——_Fnt
2\/3 Y574 13 e Alyay®? A7 A7) Ve
5 \/—FAB'Y o (912)
1 1 V3 1 1

= 2—\/§F1BVBWA’YA - ﬁFw(SABWA + TFA371’YAB — ﬁFAB'Yl’YAB — 2—\/§FA17A

—F 913
2\/— AB’Y ,7 ( )
\/g A 1 A \/g 1_AB 1

= —TFMV + %FMV - TFAB'Y T ﬁFAﬂA (914)

= —\/TgFAB’YI’YAB : (915)
Altogether, I get

AA, = —\?EI - ?F v YA 4+ 1V3aayyA. (916)

Yyt Ay + Ayt = —VBE — ?FA 7'y + 2iv3Baay'y?, (917)

which corresponds exactly to the integrand in the theorem. U

Corollary 5.6.1. If the extrinsic curvature, Ky, of ¥; is less than O(1) near 0x%; and
.f(O)Oa = O; then

n—1
Qle) = — e_r/ pueryM ey /v foy 4" — V3 E\&pepdA (918)
00Xt 00Xt

= 2/ ((Vfg)TV £ 4+ 4nT¥  tyoy.e — 21v/3pety? ) dv (919)
¢

>0, (920)

i.e. under the extra assumptions made, the magnetic and gauge field boundary integrals cancel.

Proof. The proof is identical to that of corollary except that v;7/K = —2¢I% now,
instead of just —y/%. This factor of 2 exactly matches the extra factor of 2 between the
coefficients of the magnetic and gauge field boundary integrals compared to theorem 5.3l O

5.2.1 Toroidal boundary
Consider again the toroidal boundary, f) = —dt ® dt + 6,5 dO* @ des.

Theorem 5.7 (5D, N = 2, toroidal boundary supergravity BPS inequality). If the equations of
motion hold, Tok.. decays faster than O(e™("=Y") near 0,8, Tother > \/TomherTotherl 4 352 /4
and (M, g)’s spin structure is compatible with having periodic spinors near 0%y, then

TAIA. (921)

Proof. The proof is identical to theorem [5.4] O
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5.2.2 Asymptotically AdS

Theorem 5.8 (5D, N/ = 2, asymptotically AdS supergravity BPS inequality). If the equations
of motion hold, T2 decays faster than O(e™") near 0%, Tothr > /TomerToherl 1352 /4,
Ar decayd™] faster than O(e*™) and Ey decays as O(e™3"), then

. i V3
EI=iPry" + 51" + Ky = =-a” (922)

1 a non-negative definite matriz.
Proof. As in 4D, corollary is applicable for this boundary geometry. Both integrals in
corollary are analysed identically to their analogues in theorem [5.5 U

This theorem generalises the result in [20], while also allowing for non-zero magnetic fields and
non-zero spacelike components to the gauge field.

5.2.3 Charged, equal angular momenta Myers-Perry solution example

As an example of the BPS inequalities proven in this section, I'll apply theorem to the 5D,
minimal, gauged supergravity analogue [56] of the example in section of 4.2.1} In the form
presented in [57], 5],

R*W 1 1, L
9= dt®dt+WdR®dR+ZR (df ® df + sin*(0)d¢ ® do)
+ b?(dep + cos(0)do + fdt) @ (dy + cos()de + fdt) (923)
QV3 j
and a = _2—ff2 dt — §(d¢ + COS(Q)de) s (924)
2P — 2 24 2pj2
where W =1+ 47 — R2Q+Q L (925)
J (2P-Q @
f =5 ( R2  RY)’ (926)
2 1o 2j*°P  j*Q°

b= R 1+ i R ) (927)

P, @ & j are constants and the angles, 1, 8 & ¢, are the same as in section |4.2.1]
Start with the Fefferman-Graham coordinate. % plays the same role here as f? in section

421

2i2P  j2Q°\ 2P —2Q Q-+ 2P

_ 2

W=1+R (1+ e R (928)
2((42 = 1)P 1 — 42 252P

R? R*
Comparing with section |4.2.1] the analogue of M Z in equation is (1 — 43P —Q.
.. From the work there, I immediately get

er—>%(R+\/1+R2) (1— (1_j2>P_Q) and (930)

4R

R? — ™ ((1 — iﬁ’”) + % (1-474P-Q) e-47“> . (931)

41This is a weaker decay condition than in definition The decay there ensures the boundary integrals in
theorem [3.19] are convergent. However, I am dealing with that issue separately with a specific decay condition
on E;. Hence, I can assume this weaker decay condition, which suffices for the analysis is section 3] - in

particular, lemma
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These expansions fully determine the other coefficients in the metric.
2 1 2r 1 —2r ? 1 -2 —4r -2 —4r 22 —6r
b — e I— e +§((1—j)P—Q)e (14 252°Pe — j2Q%™)  (932)

1 1 21
— Ze” ((1 — Ze—ZT) +3 (1-57P-Q)e ™+ 2j2Pe_4T>

(933)
_leQ'r 1—16_2T 2+l((1+3,2>P_Q)e—47‘ (934)
T 1 2 J '
RPW  R? 4
4 4 R2(1+ 252P/R* — j2Q2/RY)
y (1 Lo 20 —;P +Q) (- 32)§1+ 222P> (935)
2
— (1 —2j*Pe™"") (1 +e” ((1 - %e%) + % (1-75)P-Q) e4”>
+2((j> - 1)P+ Q)e2’“> (936)
2r -2 —4r 1 —2r ? 1 -2 —4r
=e” (1 —25°Pe™™) (14-4—16 ) —1—5((1—])]3—@)6
+2((j> - 1)P+ Q)e_‘”) (937)
2r 1 —2r ? 1 -2 —4r
— e (1+Ze ) +§(3Q—(] +3)P)e : (938)
Substituting these into equation [923| gives
2r 1 —2r ? 1 1 —or 2 .92
g=e —(1-1-16 ) dt®dt+1(1—zle ) (d6 @ df + sin’*(F)d¢ @ d¢

+ (de) + cos(0)de) ® (dy + cos(6)de))
+ e—‘*’"( - %(3@ — (J2+3)P)dt ® dt + é((l — 7P — Q)(df ® df + sin?(9)d¢ @ d¢)
(4 37)P = Q)4 + cos(9)d6) @ (A + cos(9)do)
- %j(QP — Q)(dt ® (d¢) + cos(0)d¢) + (dy + cos(0)d¢) @ dt))) +dr @ dr. (940)
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.. The metric is indeed asymptotically AdS in the sense of definition 2.3 Furthermore, it has
1
foy = —dt®@dt + Z((dw + cos()dg) @ (dyp + cos(8)deg) + df @ df + sin*(0)d¢ @ dp) (941)
= —dt®dt +ggs and (942)
1 1
foy = —5(3Q —(J2+3)P)dt @ dt + g((l — P — Q)(df ® df + sin®*(0)d¢ ® do)

+ =((1+ 352 P — Q)(dep 4 cos(#)de) @ (dvp + cos(#)do)

— 00| —

— 53(2P = Q)(dt @ (A + cos(6)de) + (d + cos(0)dp) ® dt). (943)

These are the same form as equations and [461], so following the work there,

E = ﬁ . (4(1 + cot?(0)) faza — ifnong))f(zlm + 4 f(a)33 + ﬁf@)m) d(gss) (944)
_ 1 1 2 -2 COS(H) .9
~ 1 [ (G0 oo+ 3P - Q) - 0 (1-+3P - Q) costt)
+ %((1 — P —-Q)+ 2811;[2(9) (1 — 43P —Q)sin*()
# gy (1 37)P = Qo (9) s 015
- F+9P 30 d(gss) (946)
8T g3
= %((jz +3)P —3Q), (947)

which matches the result calculated in [58] using the completely different methods of [59].
Similarly, from the work in section [£.2.1] T can also immediately read off K; = Py = 0 and

) 0 -1 0 O . 0 -1 0 O
T ] ) R

0 0 1 O 0 0 1 0

The only remaining quantity in equation is the electric charge. For that,

F—da= Q]f dR A (dt _ %(dw + cos(e)d¢)) _J f]f sin(6)d0 A db (949)
— QV3e Zdr A (dt — %(dw + Cos(e)d¢)) - jQT\/ge_QT sin(6)dd A de. (950)
o By = Fg=QV3e™. (951)
= % . EidA = Q—‘f . d(ggs) = ”QQ\/? (952)

Substituting all these quantities into theorem implies

irj(2P — @ 3@
( : )70 (7271+7473)_ 0

NG+ R)P - 3Q)T + T (953)
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is non-negative definite. Using a computer algebra software, it can be checked the eigenvalues
of this matrix are

3r@Q w,, . 37@ mj(2P — Q)
VR Z<<‘72+3)P_3Q) 1 5
3rQ  mj(2P - Q)

4 2 ‘

17 +3)P -3Q) +

and Z((j2 +3)P - 3Q) -

(954)

Which of these is the lowest eigenvalue depends on the choices of j, P and (). Nonetheless,
they all have to be non-negative. Therefore,

%((j2+3)P—3Q)+ﬂ>O — P >0, (955)
T, 3rQ  wj(2P — Q)
(P +3)P=3Q) - ==+ 5 >0 < P> i and (956)
v 37Q  7i2P - Q) 20
Z((j2+3>P_3Q)_ 1 _ 5 >0<:>P>_j—1 (957)

From [57], each inequality is saturated by a known supersymmetric solution. In particular,
P =0 is the Klemm-Sabra solution [60] and P = j:f% are the Gutowski-Reall solutions [61]

with their e = F1 respectively@.

5.2.4 Lens spaces, L(p,1)

Theorem 5.9 (5D, N = 2 supergravity BPS inequality for spacetimes asymptotically Kottler
with lens space cross-section). If the equations of motion hold, Tft‘fler decays faster than O(e™>")
near 0u Xy, T > \/ToherTotherl 4 352 /4 A, decayl 3| faster than O(e*") and E; decays as

O(e™%), ther™]
E>——qe+\/J2+J2+J2 (958)

Proof. Corollary [5.6.1| applies again and the Killing spinor, €, is constructed exactly as in
section [4.3.2)
*. The first boundary integral is identical to what I had to evaluate earlier; the result is

n ; 1e_r /800& préey ey, t* fo) d" 2z (959)

= 167" (EI 4 Jyoy + Js09 + Jy03) x (960)

for e, = e"/2P[ (e”ot/Q — ie‘”otﬂ) e+ %e_’"ﬂPfL (e”ot/Q + ie‘”otﬂ) Em, (961)
ey = 7 4?17V 268272 (962)
and gy = [z, —2]T. (963)

42The € = +1 solutions are not physically too dissimilar; it’s merely that a rotation direction is reversed.

43This is a weaker decay condition than in definition The decay there ensures the boundary integrals in
theorem [3.19] are convergent. However, I am dealing with that issue separately with a specific decay condition
on F;. Hence, I can assume this weaker decay condition, which suffices for the analysis is section - in
particular, lemma

44Note that the meaning of positive and negative charge depends on the choice of positive orientation on the
lens space. I will be using the orientation defined by lemma@

87



It remains to evaluate the 2nd integral in corollary [5.6.1] The spinor factor is

ger = (¢ Pre_ + (3_”/2P1+5+)T V(€2 Pre_ +e " 2Pey)
— el O PFPre_ 4+ el P T Pre_ + el AP Pre, + el /0P Plre,
= 0+4+¢ely'Pre. +e7°Pte, +0

_ %ETH <e—170t/2 lewot/2> AP (ewot/Q _ ie—motm) -

+ %E;L (efi’vot/2 + iei’yot/2> ’}/OP1+ (ei'yot/Q + ie_i,yot/2) cu

_4 3 Ul (cos(t/2)1 + sint/27°) 1Py (cos(t/2)] —sin(t/2)) e

(1+1)% 4
2

Using computer algebra, one finds the result is £,e, = —2zfz.

=3 FEiée,dA = 2\/593*:1:/ EdA = 87r\/§q5xTx.

aoozt 800 Et

*. Corollary reduces to
3
0< 167T13T (EI + gqef + Joo1 + J3(72 + J403> X

The eigenvalues of the matrix inbetween z! and z are

E+—qej:\/J2+J2+J4

and thus the result follows.

ey (cos(t/2)I —sin(t/2)7") y* P (cos(t/2)I + sin(t/2)7°) ep.

(964)
(965)
(966)

(967)

(968)

(969)

(970)

(971)

g

There is a known soliton solution in this theory with L(p, 1) cross-section for p > 3. From [62],

1
g=—f*(dt +w)® (dt + w) + ~h and

f
F = ﬁd(f(dt—l—w)) —%GJF— \/7§J for
P
hzvdp®dp+ (df ® df + sin?(A)d¢ ® do)
Vp?

+ —(dw + cos(0)d¢) ® (dy + cos(0)de),
w = ws(dy + cos(0)de),
Gt = g(dw + *pdw),

1
J = Zd(p2(dw + xpdw)),

_ ¥
Co — 1+ 3p27
1
V= ;(p2 — pg)(ao + a1p® + p*),
1
w3 = Wp‘l(?(co — 1)ea + (3(co — 1)% + 9¢2)p* + 18(co — 1)p* 4 180°)
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(979)
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and all constants determined in terms of p by

co = a1 — P, (981)
co = ag — a1y, (982)
a
m=p- -, (983)
Po
)
ao= "0 (2p* —dp+ 3+ (p — 8)p3) and (984)
p+1
p—2
,0(2):?(p2+14p—5+(p+1)\/(17+1)(25 +p). (985)

From [63] (as can be verified using the methods in this work), this solution has

_m(2p+5)(p —2)°

E= 986
108 : (986)
m(p —2)?
o | 987
q 6573 (987)
m(p —2)3
I = —(]190—8]9) and Jy, = J; = Jy = 0. (988)

This solution was constructed as a supersymmetric solution as per the methods of [64]. Hence,
one would expect it to saturate the BPS inequality of theorem [5.9 However, it explicitly
violates theorem [5.9 It turns out theorem is not applicable to this solution. While this
metric is locally constructed using methods from supersymmetry, there are global topological
problems. The issues are the same as those discussed in [4§] for solutions with analogous
topological structure. In particular, when p is even, there are two inequivalent spin structures.
The soliton described requires spinors to be antiperiodic in 1, while the ¢, used in theorem
requires spinors to be periodic in ). This situation is somewhat similar to the AdS soliton with
torioidal cross-section discussed earlier. Meanwhile, when p is odd, the soliton in fact admits
no spin structure at all. The best that can be done is instead a spin® structure. This soliton
satisfies the tantalising BPS identity,

3
jo gqe +2J,. (989)
It remains to be seen whether there exists a more general inequality of this sort and whether
it can be proven using a variation of Witten’s technique where one leverages spin® structures
instead of the familiar spinor methods discussed in this work.
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A Conventions

I use nine different types of indices, as given below.

e a,b,c,--- are abstract indices on the full spacetime.
® L, v, p,--- are vielbein indices running 0,1,--- ,n — 1.
e 1/ 1V, p, ... are coordinate indices running 0,1,--- ,n — 1.

e M,N,P,--- are vielbein indices running 0,2,3,--- ,n — 1.

e m,n,p,--- are coordinate indices running 0,2,3,--- ,n — 1.
e A B,C,--- are vielbein indices running 2,3,--- ,n — 1.

e o, (3,7, are coordinate indices running 2,3,--- ,n — 1.

e [ J K, .- are vielbein indices running 1,2,--- ,n — 1.

® i, 7, k,--- are coordinate indices running 1,2,--- ,n — 1.

I use a mostly pluses metric signaturd™|
The gamma matrices are chosen to be unitary and satisfying y#~" + yV~# = —2n* 1.
On occasion it may be convenient to choose a representation of the gamma matrices for prac-

tical calculations like finding eigenvalues, even though all equivalent representations will give
the same result. When n = 4, I'll choose

0 0 —1 0 0 0 0 1 0 0 0 —i
o |0 0 0 -1 L lo 0o 1o , |0 0 i 0
T701=1 0 0o o7 T ]o 100”7 T]0 io0 0
0 -1 0 0 1.0 00 i 00 0
0 01 0
0 00 —1
3 _
and’y—_loo0 (990)
0 10 0
When n = 5, I'll choose
10 0 0] 00 —1 0 000 i
o 001 0 o0 L oo 0o 41 . (00 i 0
T74oo0o =1 o7 " f10 0 ol " loiool
00 0 —1] 01 0 0 i 000
[0 0 0 1 00 i 0
0 0 —1 0 0 0 0 —i
3 _ 4
=101 0 of ™Y =1 0 0 0 (591)
-1 0 0 0 0 -1 0 0

When n = 5, there are two inequivalent representations of the Clifford algebra; it will matter
in section that I choose this particular equivalence class.

45This is the only sensible convention.
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The cosmological constant is always taken to be negative and parameterised as

A = —55(n— 1)(n — 2), for some length scale, I. It will then be convenient to work in [ =1

units; [ can be restored in any equation on dimensional grounds.
I use the Riemann tensor convention where [D,, Dy|V¢ = R¢,,, V<.

The following symbols have the meanings listed.
e M: The full spacetime
e g: The (Lorentzian) metric on M
e n: The dimension of M
e (C°: The space of compactly supported, smooth spinors on M

e 7{: The (metric space) completion of C2° under the metric corresponding to the inner

product defined by equation [86]
e ¢ = 1)T40 for an spinor, ¢
e D,: The Levi-Civita connection of g
o Dgh): The Levi-Civita connection of a metric, h
o V., =D, +iay,p + A, for any spinor, 1.
o V.U = D, —iayry, + 97°Aly" = (V,1))1° for any spinor, 1.

® w,,,: Spin connection coefficients, with y being the one-form index and v & p being the
o(n —1,1) indices

I: The identity matrix

References

[1] V. Rallabhandi. On energy bounds in asymptotically locally AdS spacetimes, 2025.
arXiv([gr-qc/2508.19108].

[2] R. Schoen and S.T. Yau. On the proof of the positive mass conjecture in general relativity.
Communications in mathematical physics, 65:45-76, 1979.

[3] E. Witten. A new proof of the positve energy theorem. Communications in mathematical
physics, 80(3):381-402, 1981.

[4] G.W. Gibbons, S.W. Hawking, G.T. Horowitz, and M.J. Perry. Postive mass theorems
for black holes. Communications in mathematical physics, 88:295-308, 1983.

[5] G.W. Gibbons, C.M. Hull, and N.P. Warner. The stability of gauged supergravity. Nuclear
physics B, 218(1):173-190, 1983.

[6] L.F. Abbott and S. Deser. Stability of gravity with a cosmological constant. Nuclear
physics B, 195(1):76-96, 1982.

[7] C. Fefferman and C.R. Graham. Conformal invariants. In Elie Cartan et les mathematiques
d’aujourd’hui, page 95. Asterisque, 1985.

91



8]

[10]

[11]

[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[24]

[25]

S. de Haro, K. Skenderis, and S.N. Solodukhin. Holographic Reconstruction of Spacetime
and Renormalization in the AdS/CFT Correspondence. Communications in Mathematical
Physics, 217:595-622, 2001.

K. Skenderis. Lecture notes on holographic renormalisation. Classical and quantum gravity,
19(22):5849, 2002.

X. Wang. The mass of asymptotically hyperbolic manifolds. Journal of differential geom-
etry, 57(2):273-299, 2001.

P.T. Chrusciel and M. Herzlich. The mass of asymptotically hyperbolic Riemannian man-
ifolds. Pacific journal of mathematics, 212(2):231-264, 2003.

P.T. Chrusciel and G. Nagy. The mass of spacelike hypersurfaces in asymptotically anti-de
Sitter space-times. Advances in theoretical and mathematical physics, 5(4):697-754, 2001.

P.T. Chrusciel, D. Maerten, and P. Tod. Rigid upper bounds for the angular momentum
and centre of mass of non-singular asymptotically anti-de Sitter space-times. Journal of
high energy physics, 2006(11):084, 2006.

M.C. Cheng and K. Skenderis. Positivity of energy for asymptotically locally AdS space-
times. Journal of high energy physics, 2005(08):107, 2005.

M. Henneaux and C. Teitelboim. Asymptotically anti-de Sitter spaces. Commnications
i mathematical physics, 98:391-424, 1985.

J.M. Nester. A new gravitational energy expression with a simple positivity proof. Physics
letters A, 83(6):241-242, 1981.

G.T. Horowitz and A. Strominger. Witten’s expression for gravitational energy. Physical
review D, 27(12):2793, 1983.

G.W. Gibbons and C.M. Hull. A Bogomolny bound for general relativity and solitons in
N = 2 supergravity. Physics letters B, 109(3):190-194, 1982.

G.W. Gibbons, D. Kastor, L.A.J. London, P.K. Townsend, and J. Traschen. Supersym-
metric self gravitating solitons. Nuclear physics B, 416(3):850-880, 1994.

L.A.J. London. Arbitrary dimensional cosmological multi-black holes. Nuclear physics B,
434(3):709-735, 1995.

V.A. Kostelecky and M.J. Perry. Solitonic black holes in gauged N = 2 supergravity.
Physical letters B, 371(3-4):191-198, 1996.

Y. Wang and X. Xu. Hyperbolic positive energy theorem with electromagnetic fields.
Classical and Quantum Gravity, 32(2):025007, 2015.

T. Regge and C. Teitelboim. Role of surface integrals in the hamiltonian formulation of
general relativity. Annals of physics, 88(1):286-318, 1974.

R. Bartnik. The mass of an asymptotically flat manifold. Communications on pure and
applied mathematics, 39(5):661-693, 1986.

P.T. Chrusciel. Lectures on energy in general relativity, 2010. Accessed on May
2, 2023 from https://homepage.univie.ac.at/piotr.chrusciel/teaching/Energy/
Energy.pdf|

92


https://homepage.univie.ac.at/piotr.chrusciel/teaching/Energy/Energy.pdf
https://homepage.univie.ac.at/piotr.chrusciel/teaching/Energy/Energy.pdf

[26]

[27]

28]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

P. T. Chrusciel and R. Bartnik. Boundary value problems for Dirac-type equations, with
applications, 2003. arXiv[math.DG/0307278].

R.A. Bartnik and P.T. Chrusciel. Boundary value problems for Dirac-type equations.
Journal for pure and applied mathematics, 579:13-73, 2005.

S. Hollands, A. Ishibashi, and D. Marolf. Comparision between various notions of

conserved charges in asymptotically AdS spacetimes. Classical and quantum gravity,
22(14):2881, 2005.

R. Arnowitt, S. Deser, and C.W. Misner. The dynamics of general relativity. In Gravita-
tion: An introduction to current research, pages 227-264. Wiley, 1962.

R. Wald. General Relativity. The University of Chicago Press, 1984.

H. Reall. Part 3 black holes, 2017. Accessed on March 4, 2024 from https://www.damtp.
cam.ac.uk/user/hsr1000/black_holes_lectures_2016.pdf.

G. Galloway and E. Woolgar. On static Poincaré-Einstein metrics. Journal of high energy
physics, 2015(6):1-18, 2015.

D. Marolf, M. Rangamani, and T. Wiseman. Holographic thermal field theory on curved
spacetimes. Classical and quantum gravity, 31(6):063001, 2014.

I. Papadimitriou and K. Skenderis. Thermodynamics of asymptotically locally AdS space-
times. Journal of high energy physics, 2005(8):004, 2005.

T. Parker and C.H. Taubes. On Witten’s proof of the positive energy theorem. Commu-
nications in mathematical physics, 84(2):223-238, 1982.

H.S. Reall. A third law of black hole mechanics for supersymmetric black holes and a
quasi-local mass-charge inequality, 2024. arXiv|gr-qc/2410.11956].

M.M. Vainberg. Variational method and method of monotone operators in the theory of
non-linear equations. John Wiley & Sons, 1973.

F. Leitner. Imaginary Killing spinors in Lorentzian geometry. Journal of mathematical
physics, 44(10):4795-4806, 2003.

H. Baum. Complete Riemannian manifolds with imaginary Killing spinors. Annals of
global analysis and geometry, 7:205-226, 1989.

G.T. Horowitz and R.C. Myers. AdS-CFT correspondence and a new positive energy
conjecture for general relativity. Physical review D, 59(2):026005, 1998.

E. Woolgar. The rigid Horowitz-Myers conjecture. Journal of high energy physics,
2017(3):1-27, 2017.

D. Katona and J. Lucietti. Uniqueness of the extremal Schwarzschild de Sitter spacetime.
Letters in Mathematical Physics, 114(1):18, 2024.

P.T. Chrusciel and E. Delay. On asymptotically locally hyperbolic metrics with negative
mass. Symmetry, integrability and geometry: methods and applications, 19:5, 2023.

S. Hirsch and Y.Zhang. Initial data sets with vanishing mass are contained in pp-wave
spacetimes, 2024. arXiv[gr-qc/2403.15984].

93


https://www.damtp.cam.ac.uk/user/hsr1000/black_holes_lectures_2016.pdf
https://www.damtp.cam.ac.uk/user/hsr1000/black_holes_lectures_2016.pdf

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

K. Skenderis and S.N. Solodukhin. Quantum effective action from the AdS/CFT corre-
spondence. Physics letters B, 472(3-4):316-322, 2000.

H.K. Kunduri, J. Lucietti, and H.S. Reall. Gravitational perturbations of higher dimen-
sional rotating black holes: tensor perturbations. Physical review D, 74(8):084021, 2006.

M. Cvetic, P. Gao, and J. Simon. Supersymmetric Kerr-Anti-de Sitter solutions. Physical
review D, 72(2):021701, 2005.

M. Cvetic, G.W. Gibbons, H. Lu, and C.N. Pope. Rotating black holes in gauged super-
gravities; thermodynamics, supersymmetric limits, topological solitons and time machines,
2005. arXiv[hep-th/0504080].

M.Y. Wang. Parallel spinors and parallel forms. Annals of global analysis and geometry,
7(1):59-68, 1989.

M.Y. Wang. On non-simply connected manifolds with non-trivial parallel spinors. Annals
of global analysis and geometry, 13(1):31-42, 1995.

C. Bar. Real Killing spinors and holonomy. Communications in mathematical physics,
154:509-521, 1993.

M. Obata. Certain conditions for a Riemannian manifold to be isometric with a sphere.
Journal of the mathematical society of Japan, 14(3):333-340, 1962.

M.J. Duff, B.E. Nilsson, and C.N. Pope. Kaluza-Klein supergravity. Physics reports,
130(1-2):1-142, 1986.

A. Franc. Spin structures and Killing spinors on lens spaces. Journal of geometry and
physics, 4(3):277-287, 1987.

H. Lu, C.N. Pope, and J. Rahmfeld. A construction of Killing spinors on S™. Journal of
mathematical physics, 48(9):4518-4526, 1999.

M. Cvetic, H. Lu, and C.N. Pope. Charged Kerr—de Sitter black holes in five dimensions.
Physical letters B, 598(3-4):273-278, 2004.

O. Madden and S.F. Ross. On uniqueness of charged Kerr—AdS black holes in five dimen-
sions. Classical and quantum gravity, 22(3):515, 2005.

H.K. Kunduri and J. Lucietti. Notes on non-extremal, charged, rotating black holes in
minimal D=5 gauged supergravity. Nuclear physics B, 724(1-2):343-356, 2005.

A. Ashtekar and S. Das. Asymptotically anti-de Sitter spacetimes: conserved quantities.
Classical and quantum gravity, 17(2):L17, 2000.

D. Klemm and W.A. Sabra. Charged rotating black holes in 5d Einstein-Maxwell-(A)dS
gravity. Physical letters B, 503(1-2):147-153, 2001.

J.B. Gutowski and H.S. Reall. Supersymmetric AdS5 black holes. Journal of high energy
physics, 2004(2):6, 2004.

J. Lucietti and S. Ovchinnikov. Uniqueness of supersymmetric AdS5 black holes with
SU(2) symmetry. Classical and quantum gravity, 38(19):195019, 2021.

94



[63] T. Durgut and H.K. Kunduri. Supersymmetric asymptotically locally AdS5 gravitational
solitons. Annals of physics, 457:169435, 2023.

[64] J.P. Gauntlett and J.B. Gutowski. Supersymmetric solutions of minimal gauged super-
gravity in five dimensions. Physical review D, 68(10):105009, 2003.

95



	Introduction
	Hamiltonian formulation
	Positive energy theorem
	Elements of analysis
	Main theorem

	
	Toroidal boundary
	
	

	General cross-sections
	
	
	


	BPS inequalities
	
	Toroidal boundary
	Asymptotically AdS

	
	Toroidal boundary
	Asymptotically AdS
	Charged, equal angular momenta Myers-Perry solution example
	


	Conventions

