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Abstract

This work considers positive energy theorems in asymptotically, locally AdS spacetimes.
Particular attention is given to spacetimes where conformal infinity has compact, Einstein
cross-sections admitting Killing or parallel spinors; a positive energy theorem is derived for
such spacetimes in terms of geometric data intrinsic to the cross-section. This is followed
by the first complete proofs of the BPS inequalities in (the bosonic sectors of) 4D and
5D minimal, gauged supergravity, including with magnetic fields. The BPS inequalities
are proven for asymptotically AdS spacetimes, but also generalised to the aforementioned
class of asymptotically, locally AdS spacetimes. I wrote these notes in the process of
producing [1]. The presentation here is much more pedagogical and written in a much
more informal (but more opinionated) style. Some of the material has been superseded
by [1] and there were only ever very limited checks of these notes.
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1 Introduction

The positive energy theorem stands as one of the most treasured and significant results in
mathematical general relativity - originally proved by Schoen & Yau based on minimal surface
methods [2] and soon after by Witten [3] based on spinor techniques. Witten’s method sug-
gested a number of extensions, including allowing a negative cosmological constant - the focus
of the present work. The first positive energy theorems for asymptotically AdS spacetimes
[4, 5] followed soon after Witten’s original work and were based on the Abbott-Deser definition
of energy & asymptotics [6].

However, in the age of holography, a more natural choice of asymptotics is one based on a
Fefferman-Graham expansion [7, 8, 9]. In particular, the Einstein equation is solved order by
order from a timelike conformal boundary and the geometry of the boundary itself is arbitrary;
the case of a static R× S2 boundary reduces to the asymptotically (globally) AdS case. Rig-
orous definitions of energy were given in the latter context by [10, 11, 12] and corresponding
positive energy theorems were subsequently proven1.

Having understood the “global” case, the next logical extension is the “local” case. The
example of a toroidal boundary was considered in [13] and a more general analysis was per-
formed in [14]. One of the main aims of this work is to built upon the latter. I will adopt a few
conceptual differences though. Most saliently, I will not follow the holographic renormalisation
[9] approach pursued by [14]. Instead, energy will be defined using the background subtrac-
tion and Hamiltonian methods of [15, 12, 11]. Furthermore, Killing spinors will play a crucial
role in the analysis. To this end, I develop a general formula for imaginary Killing spinors
on time-symmetric metrics with cross-sections admitting either parallel or real Killing spinors.
This formula allows a derivation of a positive energy theorem based on data intrinsic to the
cross-section. The theorem decomposes the “Witten-Nester” energy [16] of [14] into further
“conserved quantities” built from symmetries of the boundary geometry.

Given the deep connections between Witten’s method and supergravity [17], another natu-
ral extension is to try prove BPS inequalities for (the bosonic sectors of) supergravity theories.
This was realised very soon after Witten’s original work to prove global mass-charge inequali-
ties in asymptotically flat spacetimes in four and five dimensions [18, 19]. While some results
already exist along these lines [20, 21, 22] in the context of asymptotically AdS spacetimes
- i.e. in gauged supergravity theories - the magnetic field is set to zero in [20] and a non-
gauge-covariant connection is used in [21, 22], thereby leading to some unnatural assumptions
- which in fact never hold in electrovacuum - and different results to the present work when
incorporating magnetic fields. I aim to build upon the literature by providing a more complete
treatment of magnetic fields in the study of classical energy-charge inequalities with negative
cosmological constant.

1Note that in the former two references, the asymptotics considered are Riemannian, not Lorentzian, and
should be viewed as asymptotics for an initial data slice.
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I begin in section 2, by deriving a definition of energy based on the techniques in [23] and
[15]. However, I will not consider questions of geometric invariance á la [24], [10] or [12]. My
main positive energy theorem - theorem 3.19 - follows in section 3. I use a Witten-style spino-
rial proof [3] and relevant spin assumptions will be stated as they arise. My presentation relies
heavily on work in [25], [26] and [27] - especially the analysis of the Dirac operator and the use
of modified, more general spin connections. In section 4, I’ll apply my main result - theorem
3.19 - to various examples. To illustrate the effects of the boundary geometry, as a running
theme I will compare asymptotically AdS spaces - with R × Sn−2 boundary - to spaces with
R×Tn−2 boundary. In section 4.2, based on the analysis in [13], I will also give a more complete
analysis of the “Witten-Nester energy” than [28] or [14] and explain its relationship with the
energy I define in section 2. In section 4.3, I consider general static boundary metrics with
a parallel or Killing spinor on the cross-section and derive a positive energy theorem which
is much more manifestly dependant only on the boundary data. The theorem is illustrated
with some more exotic boundary geometries such as R× L(p, 1). Section 5 I will consider the
minimal, gauged supergravities. The main results are theorems 3.19, 4.8, 4.3, 4.13, 4.14, 4.17,
5.5, 5.4, 5.8, 5.7 and 5.9.

Finally, readers are highly encouraged to familiarise themselves with my notational conven-
tions - as listed in appendix A. I will use a litany of different types of indices2. Furthermore,
only a very naive person would assume two people have common spinor/gamma matrix con-
ventions.

2 Hamiltonian formulation

Definition 2.1 ((n− 1) + 1 split). The metric, g, is said to be written in an (n− 1) + 1 split
if and only if

g = −N2dt⊗ dt+ hij(dx
i +N idt)⊗ (dxj +N jdt) (1)

for some hij, N
i, N and coordinates, (t, xi).

It is well known that this split admits a Hamiltonian formulation by the ADM formalism [29]
- see also textbook treatments in [30] or [31]. I’ll recount the story briefly. N and N i turn out
to be auxiliary fields and one finds the conjugate momentum to hij is

pij =
√
h(Kij −Khij), (2)

where h = det(hij) and Kij is the extrinsic curvature of Σt, namely3

Kij =
1

2N

(
∂thij −D

(h)
i Nj −D

(h)
j Ni

)
, (3)

where D(h) refers to the Levi-Civita connection of hij.
Then, up to boundary terms, one finds the Hamiltonian (arising from the Einstein-Hilbert
Lagrangian with cosmological constant4) is

H =
1

16π

∫
Σt

(
N

(
1

h
pijpij −

1

(n− 2)h
p2 −R(h) + 2Λ

)
− 2N iD(h)j

(
1√
h
pij

))
dV. (4)

2You have been warned.
3i, j, · · · indices are raised and lower by the h metric in the ADM formalism.
4The matter Lagrangian doesn’t need to be considered in this process of defining gravitational energy.
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I will take the same perspective as [23] and [15] in advocating energy to most simply be defined
as the value of the Hamiltonian. However, by the constraint equations, the H in equation 4 is
zero when the Einstein equation holds, suggesting the energy is always zero. The resolution is
that the boundary terms do matter. As explained in [23], these boundary terms are essential
to have a well defined variational principle. As shown in [23, 15, 30, 31], upon a variation to
the metric, when the equations of motion hold, the Hamiltonian changes as

16πδH = −
∫
∂∞Σt

Nli
(
D(h)jδhij −D

(h)
i (hjkδhjk)

)
dA− 2

∫
∂∞Σt

liN jδ (Kij −Khij) dA

+

∫
∂∞Σt

li
(
D(h)j(N)δhij − hjkδhjkD

(h)
i N

)
dA

+

∫
∂∞Σt

N i 1√
h
δ(hjk)

(
lip

jk − pill
lhjk + 2p ki l

j
)
dA, (5)

where ∂∞Σt denotes the “boundary” at infinity of a constant t surface, Σt, and li is the
(outward pointing) normal to ∂∞Σt. The first and thrid integrals come from R(h)’s variation,
the second integral comes from δ(pij/

√
h) and the fourth integral comes from the variation of

the Christoffel symbols when D(h)j acts on pij/
√
h.

One then defines the true Hamiltonian, H ′ say, to be H + E, where E is some quantity such
that that δE = −δH. Hence, δH ′ = 0 when the equations of motion hold and the energy - the
on-shell value of H ′ - is just E.
To make further progress, one needs to choose asymptotics, so the integrals in δH can be
evaluated more precisely. In this work, I’m interested in asymptotically locally AdS spaces.

Definition 2.2 (Asymptotically locally AdS). A spacetime, (M, g), is said to be asymptotically
locally AdS if and only if only if ∃ coordinates, (z, xm), in an open neighbourhood of the “bound-
ary” at infinity5 such that {z = 0} is the “boundary” itself and g admits a Fefferman-Graham
expansion6 [7],

g =
1

z2
dz ⊗ dz +

1

z2
(
f(0)mn + zf(1)mn + z2f(2)mn + · · ·

)
dxm ⊗ dxn (6)

for some f(k)mn that do not depend on z. By defining r = − ln(z), the “boundary” becomes
{r = ∞} and

g = dr ⊗ dr + e2r
(
f(0)mn + e−rf(1)mn + e−2rf(2)mn + · · ·

)
dxm ⊗ dxn. (7)

The series, f(0)mn + e−rf(1)mn + e−2rf(2)mn + · · · , will be denoted fmn (when summed).

The first n−2 terms of fmn are uniquely determined by the curvature of f(0)mn [7], i.e. specifying
f(0) specifies f up to O

(
e−(n−2)r

)
.

Definition 2.3 (Asymptotically AdS). A spacetime, (M, g), is said to be asymptotically AdS
if and only if it is asymptotically locally AdS and

fmn dx
m ⊗ dxn

= −
(
1 +

1

4
e−2r

)2

dt⊗ dt+

(
1− 1

4
e−2r

)2

gSn−2 + e−(n−1)rf(n−1)mn dx
m ⊗ dxn + · · · . (8)

5First of all, such a notion of “boundary” at infinity should exist on (M, g).
6This expansion implicitly sets the “AdS length scale,” to 1. Equivalently, one would choose units such that

the cosmological constant is Λ = − 1
2 (n − 1)(n − 2). The length scales can always be restored on dimensional

grounds.
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Equivalently,

g = dr ⊗ dr + e2r

(
−
(
1 +

1

4
e−2r

)2

dt⊗ dt+

(
1− 1

4
e−2r

)2

gSn−2 +O
(
e−(n−1)r

))
(9)

= gAdS + e2r(e−(n−1)rf(n−1)mn + · · · ) dxm ⊗ dxn. (10)

Note that when n ≤ 5, there is an annoying subtlety that the “background metric,” gAdS, goes
to an order in e−r at least as high as the “leading correction” term, e−(n−1)rf(n−1)mn dx

m⊗dxn.
In such cases, especially in definition 3.15 later, I will always also include these fixed higher
order terms in the background metric.

Having established asymptotics, I can now calculate the boundary integrals in equation 5.
Since f(1), f(2), · · · , f(n−2) are determined by f(0) and the Fefferman-Graham expansion always
includes an exact dr ⊗ dr factor, I should let

δg = e2r
(
e−(n−1)rδf(n−1)mn +O(e−nr)

)
dxm ⊗ dxn (11)

in following the “background subtraction” method of [23] and [15]. Again, for n ≤ 5, asymp-

totically AdS spactimes, the higher order terms of −
(
1 + 1

4
e−2r

)2
dt⊗ dt+

(
1− 1

4
e−2r

)2
gSn−2

are included in the background metric and not considered in δg.

Theorem 2.4. For variations given by equation 11,

δH = −δ
(
n− 1

16π

∫
∂∞Σt

((
f̃mn(0) + f 00

(0)f̃
mp
(0) f̃

nq
(0)f(0)0pf(0)0q

)
f(n−1)mn − f 00

(0)f̃
mn
(0) f(0)0nf(n−1)0m

)
×
√
ι∗f(0)/f

00
(0)d

n−2x

)
(12)

where e−2rf̃mn(0) = e−2r(fmn(0) + nm(0)n
n
(0)) is the induced (inverse) metric on constant t and r

surfaces and ι∗f(0) is the pullback of f(0) to constant t surfaces7.

Proof. As I’m using Fefferman-Graham coordinates, li = δi1. Hence, equation 5 becomes

16πδH = −
∫
∂∞Σt

N
(
D(h)iδh1i −D

(h)
1 (hijδhij)

)
dA− 2

∫
∂∞Σt

N iδ (K1i −Kh1i) dA

+

∫
∂∞Σt

(
D(h)i(N)δh1i − hijδhijD

(h)
1 N

)
dA

+

∫
∂∞Σt

1√
h

(
δ(hij)N1p

ij − δ(hij)N
kpk1h

ij + 2δ(hi1)N
jp i
j

)
dA (13)

Furthermore, comparing equations 1 and 7, it immediately follows that

Ni = e2rδαif0α, −N2 +N iNi = e2rf00 and (14)

hij = δi1δj1 + e2rδαiδ
β
jfαβ ≡

[
1 0
0 e2rfαβ

]
. (15)

Since N1 = 0, it follows that
∫
∂∞Σt

1√
h
δ(hij)N1p

ijdA = 0.

Because f is artificially split in this way, I will denote the inverse of the (n − 2) × (n − 2)
matrix, fαβ, as j

αβ.

∴ hij ≡
[
1 0
0 e−2rjαβ

]
. (16)

7i.e.
√
−ι∗f(0) is the square root of the determinant of (n − 2) × (n − 2) matrix that is f(0) restricted to

constant t surfaces.
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Note that jαβ is not the (α, β) component of fmn; the two are related by

fmn ≡ 1

f00 − jθϕf0θf0ϕ

[
1 −jβγf0γ

−jαγf0γ jαβf00 + (jαγjβδ − jαβjγδ)f0γf0δ

]
because (17)

1

f00 − jθϕf0θf0ϕ

[
1 −jγδf0δ

−jαδf0δ jαγf00 + (jαδjγϵ − jαγjδϵ)f0δf0ϵ

] [
f00 f0β
f0γ fγβ

]
(18)

=
1

f00 − jθϕf0θf0ϕ

[
f00 − jγδf0δf0γ f0β − jγδf0δfγβ

0 −jαδf0δf0β + jαγf00fγβ + (jαδjγϵ − jαγjδϵ)f0δf0ϵfγβ

]
(19)

=
1

f00 − jθϕf0θf0ϕ

[
f00 − jγδf0δf0γ f0β − δδβf0δ

0 −jαδf0δf0β + δαβf00 + (jαδδϵβ − δαβj
δϵ)f0δf0ϵ

]
(20)

=

[
1 0
0 δαβ

]
. (21)

Anyway, with this definition,

N i = hijNj = e−2rδiαδ
j
βj

αβe2rδγjf0γ = δiαj
αβf0β. (22)

∴ N iNi = δiαj
αβf0βe

2rδγif0γ = e2rjαβf0αf0β. (23)

∴ N =
√
N iNi − e2rf00 = er

√
jαβf0αf0β − f00 = er

√
− 1

f 00
. (24)

Similarly, in the (n− 1) + 1 split, hij is just the “space part” of g, so

δhij = δgij (25)

= δ mi δ n
j e−(n−3)rδf(n−1)mn +O(e−(n−2)r) by equation 11 (26)

= δ αi δ
β
j e−(n−3)rδf(n−1)αβ +O(e−(n−2)r). (27)

An immediate corollary is that δh1i = 0; this is effectively just stating that the dr⊗ dr part of
the Fefferman-Graham expansion is unchanged.
∴
∫
∂∞Σt

D(h)i(N)δh1idA and
∫
∂∞Σt

1√
h
2δ(hi1)N

jp i
j dA are both zero in equation 13.

Next, I’ll likewise calculate all the other terms in integrands of equation 13. It will suffice to
calculate them to leading order, as will become apparent later.

hijδhijD
(h)
1 N = e−(n−1)rjαβδf(n−1)αβ∂r(N) (28)

= e−(n−1)rjαβδf(n−1)αβ∂r

(
er
√
jαβf0αf0β − f00

)
by equation 24 (29)

= e−(n−1)rNjαβδf(n−1)αβ. (30)

D
(h)
1 (hijδhij) = ∂r

(
hijδ αi δ

β
j e−(n−3)rδf(n−1)αβ

)
(31)

= ∂r
(
e−(n−1)rjαβδf(n−1)αβ

)
(32)

= −(n− 1)e−(n−1)rjαβδf(n−1)αβ. (33)

D(h)iδh1i = hijD
(h)
j δh1i (34)

= hij
(
∂jδh1i − Γ

(h)k
1jδhki − Γ

(h)k
ijδh1k

)
(35)

= 0− hijΓ
(h)k

1jδhki − 0 (36)

= −e−2rjαγΓ
(h)β

1γe
−(n−3)rδf(n−1)αβ (37)
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The Christoffel symbol simplifies as

Γ
(h)β

1γ =
1

2
hβi (∂rhγi + ∂γhi1 − ∂ih1γ) (38)

=
1

2
hβδ (∂rhγδ + ∂γhδ1 − 0) (39)

=
1

2
e−2rjβδ∂r(e

2rfγδ) + 0 (40)

= δβγ −
1

2
e−rjβδ(0)f(1)γδ +O(e−2r). (41)

∴ D(h)iδh1i = −e−(n−1)rjαβδf(n−1)αβ to leading order. (42)

N iδ(Kh1i) = δiαj
αβf0βδ(Kh1i) = jαβf0βδ(Kh1α) = 0 (43)

1√
h
δ(hij)N

kpk1h
ij = (Kk1 −Khk1)δ

k
αj

αβf0βe
−2rjγδe−(n−3)rδf(n−1)γδ (44)

= e−(n−1)r(Kα1 − 0)jαβf0βj
γδδf(n−1)γδ. (45)

For this expression, start by calculating Kα1.

Kα1 =
1

2N
(∂thα1 −D(h)

α N1 −D
(h)
1 Nα) (46)

= 0− 1

2N
(D(h)

α N1 +D
(h)
1 Nα) (47)

= − 1

2N

(
∂αN1 − Γ

(h)i
1αNi + ∂rNα − Γ

(h)i
α1Ni

)
(48)

= − 1

2N

(
0− Γ

(h)β
1αNβ + ∂rNα − Γ

(h)β
α1Nβ

)
(49)

= − 1

2N

(
−2Nα + e−rjβγ(0)f(1)γαNβ +O(e−2r) + ∂rNα

)
by equation 41. (50)

−∂rNα + 2Nα = −∂r(e2rf(0)0α + erf(1)0α + · · · ) + 2(e2rf(0)0α + erf(1)0α + · · · ) (51)

= erf(1)0α + 2f(2)0α + 3e−rf(3)0α + · · · . (52)

∴ Kα1 =
1

2N
er
(
f(1)0α − jβγ(0)f(1)γαf(0)0β +O(e−r)

)
(53)

=
1

2

√
−f 00

(
f(1)0α − jβγ(0)f(1)γαf(0)0β +O(e−r)

)
. (54)

Thus, to leading order,

1√
h
δ(hij)N

kpk1h
ij =

1

2
e−(n−1)r

√
−f 00jαβf0βj

γδδf(n−1)γδ

(
f(1)0α + jθϕ(0)f(1)θαf(0)0ϕ

)
, (55)

which integrates to zero because the measure, dA, is only O(e(n−2)r).
Finally, there’s

N iδK1i = jαβf0βδK1α (56)

= jαβf0βδ

(
1

2N

(
−∂rNα + 2Γ

(h)γ
1αNγ

))
from equation 49 (57)

= jαβf0βδ

(
1

2N

(
−∂rNα + 2Nα + jδγ∂r(fγα)Nδ

))
by equation 40 (58)
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To leading order

δ

(
1

2N

)(
−∂rNα + 2Nα + jβγ∂r(fγα)Nβ

)
= er

(
f(1)0α − jβγ(0)f(1)γαf(0)0β

)(
− 1

2N2
δ(N)

)
by equation 52 (59)

= O(ere−2rere−(n−1)r) (60)

= O(e−(n−1)r), (61)

which integrates to zero because the measure, dA, is only O(e(n−2)r). Hence, to leading order,

N iδK1i =
jαβf0β
2N

δ
(
−∂rNα + 2Nα + jγδ∂r(fδα)Nγ

)
. (62)

δ (−∂rNα + 2Nα) = (n− 1)e−(n−3)δf(n−1)0α by equation 52. (63)

δ
(
jβγ∂r(fγα)Nβ

)
= δ

(
e2rjβγ

(
−e−rf(1)γα − 2e−2rf(2)γα − · · ·

)
f0β
)

(64)

= −(n− 1)e−(n−3)rjβγ(0)f(0)0βδf(n−1)γα to leading order (65)

∴ N iδK1i =
n− 1

2N
e−(n−3)rjαβf0β

(
δf(n−1)0α − jγδf0γδf(n−1)δα

)
. (66)

Substituting all these results back into equation 13, I get,

16πδH

=

∫
∂∞Σt

(
Ne−(n−1)rjαβδf(n−1)αβ −N(n− 1)e−(n−1)rjαβδf(n−1)αβ

− n− 1

N
e−(n−3)rjαβf0β

(
δf(n−1)0α − jγδf0γδf(n−1)δα

)
− e−(n−1)rNjαβδf(n−1)αβ

)
dA. (67)

∴− 16π

n− 1
δH

=

∫
∂∞Σt

(
Ne−(n−1)rjαβδf(n−1)αβ +

1

N
e−(n−3)rjαβf0β

(
δf(n−1)0α − jγδf0γδf(n−1)δα

))
dA (68)

=

∫
∂∞Σt

Ne−(n−1)r

(
jαβδf(n−1)αβ +

1

N2
e2rjαβf0β

(
δf(n−1)0α − jγδf0γδf(n−1)δα

))
dA (69)

=

∫
∂∞Σt

√
− 1

f 00
e−(n−2)r

(
jαβδf(n−1)αβ − f 00jαβf0β

(
δf(n−1)0α − jγδf0γδf(n−1)δα

))
× e(n−2)r

√
−ι∗fdn−2x (70)

=

∫
∂∞Σt

(
jαβδf(n−1)αβ − f 00jαβf0β

(
δf(n−1)0α − jγδf0γδf(n−1)δα

))√ ι∗f

f 00
dn−2x. (71)

My earlier assertion that it suffices to go to leading order is now apparent. Anything higher
than leading order for f, j etc. would integrate to zero in this expression, due to the r → ∞
limit. Then, also noting that f(0) is unaffected by the variation, the result is

− 16π

n− 1
δH = δ

(∫
∂∞Σt

((
jαβ(0) + f 00

(0)j
αγ
(0)j

βδ
(0)f(0)0γf(0)0δ

)
f(n−1)αβ − f 00

(0)j
αβ
(0)f(0)0βf(n−1)0α

)
×
√
ι∗f(0)/f

00
(0)d

n−2x

)
. (72)
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To see the final claimed result, it suffices to show f̃mn(0) = δmαδ
n
βj

αβ
(0).

To see this, first note that n(0)m ≡ −e−rNdt (as can be seen from equation 1). Then,

nm(0) ≡
1

f00 − jθϕf0θf0ϕ

[
1 −jβγf0γ

−jαγf0γ jαβf00 + (jαγjβδ − jαβjγδ)f0γf0δ

] [
−Ne−r

0

] ∣∣∣∣
r=0

(73)

= − Ne−r

f00 − jθϕf0θf0ϕ

[
1

−jαβf0β

] ∣∣∣∣
r=0

(74)

=
√
−f 00

(0)

[
1

−jαβ(0)f(0)0β

]
(75)

and finally

f̃mn(0) = fmn(0) + nm(0)n
n
(0) (76)

≡ −f 00
(0)

[
−1 jβγ(0)f(0)0γ

jαγ(0)f(0)0γ −jαβ(0)f(0)00 − (jαγ(0)j
βδ
(0) − jαβ(0)j

γδ
(0))f(0)0γf(0)0δ

]

− f 00
(0)

[
1 −jβγ(0)f(0)0γ

−jαγ(0)f(0)0γ jαγ(0)j
βδ
(0)f(0)0δf(0)0γ

]
(77)

= −f 00
(0)

[
0 0

0 jαβ(0)(−f(0)00 + jγδ(0)f(0)γf(0)δ)

]
(78)

=

[
0 0

0 jαβ(0)

]
. (79)

Putting this result into equation 72 completes the proof. □

I should interpret δH as −δE, as discussed earlier. Thus, I immediately generate the definition
of energy I’ll be using in this work.

Definition 2.5 (Energy). The energy is defined to be

E =
n− 1

16π

∫
∂∞Σt

((
f̃mn(0) + f 00

(0)f̃
mp
(0) f̃

nq
(0)f(0)0pf(0)0q

)
f(n−1)mn − f 00

(0)f̃
mn
(0) f(0)0nf(n−1)0m

)
×
√
ι∗f(0)/f 00

(0)d
n−2x, (80)

where e−2rf̃mn(0) = e−2r(fmn(0) + nm(0)n
n
(0)) is the induced (inverse) metric on constant t and r

surfaces and ι∗f(0) is the pullback of f(0) to constant t surfaces8.

Corollary 2.5.1. For asymptotically Kottler metrics9,

E =
n− 1

16π

∫
∂∞Σt

f̃mn(0) f(n−1)mn

√
ι∗f(0)d

n−2x. (81)

Proof. The Kottler metrics are

g = −(k +R2)dt⊗ dt+
dR⊗ dR

k +R2
+R2g(k), (82)

where k = 1, 0,−1, g(1) is the metric on the unit (n − 2)−sphere, g(0) is the metric on a
unit (n− 2)−torus and g(−1) is the metric on a compact identification of (n− 2)−dimensional
hyperbolic space.
In particular, these metrics have f(0)mndx

m ⊗ dxn = −dt⊗ dt+ g(k). □

8i.e.
√
−ι∗f(0) is the square root of the determinant of (n − 2) × (n − 2) matrix that is f(0) restricted to

constant t surfaces.
9See equation 82 for what I mean by a Kottler metric.
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This corollary means definition 2.5 is a very natural, Lorentzian analogue of the Wang energy
for asymptotically Poincaré-Einstein Riemannian manifolds, defined in [10, 32].

Also note that in the case of vacuum spacetimes, the Fefferman-Graham expansion requires
fmn(0) f(n−1)mn = 0 as a result of the Hamiltonian constraint on constant r hypersurfaces [33].

Hence, f̃mn(0) f(n−1)mn = nm(0)n
n
(0)f(n−1)mn. If f(n−1)mn is viewed as an energy-momentum tensor,

then nm(0)n
n
(0)f(n−1)mn would indeed be what one naturally associates with energy density. It

turns out the “true” energy momentum tensor one requires for AdS/CFT applications is ac-
tually f(n−1)mn with corrections from the “conformal anomaly” [33, 34], but that will not be
relevant for the present analysis.
Furthermore, I will not assume fmn(0) f(n−1)mn = 0 because I will not assume the spacetime is
vacuum. Since the Hamiltonian constraint is changed by the presence of non-zero Tab, it may
be that fmn(0) f(n−1)mn is also adjusted depending on Tab’s decay rate.

3 Positive energy theorem

I will follow the Witten-style spinorial proof of the positive energy theorem [3]. Naturally, this
will rely on (M, g) actually admitting spinors. To keep Lorentz invariance manifest and to
avoid introducing extrinsic curvature terms, I will adopt Nester’s formulation [16] of Witten’s
argument. The techniques of my proof are adapted from those developed in [27, 26, 25] and
[14] for the asymptotically flat and the asymptotically locally AdS cases respectively. I will
only consider complete spacetimes for simplicity. However, (marginally) outer trapped surface
(inner) boundaries10 can also be very naturally be accommodated into the analysis using the
techniques of [4].

3.1 Elements of analysis

This subsection is devoted to sketching a proof that a certain modified Dirac operator admits
a Green’s function. Readers willing to take this fact for granted - as is often done to varying
extent in the physics literature [19, 18, 21] - may assimilate the opening definitions and skip
ahead to subsection 3.2. Historically, establishing the Green’s function has been attempted
via different approaches and with varying levels of rigour - from the highly technical operator
analysis methods of [35, 24], to the weighted Poincaré inequality methods of [27, 26, 25] to
the more heuristic method of the original [3]. In my sketch below, I will attempt to strike
something of a compromise.

Definition 3.1 (M and Aµ). Define the matrix, M, by

M = 4πT 0µγ0γµ + γIJDIAJ + iα(n− 2)(γIAI + A†
Iγ

I)− A†
Iγ

IJAJ , (83)

where Aµ is some unspecified matrix. Assume the following conditions holds.

• γIJAJ is hermitian.

• ||AI ||0 = O(e−(n−1)r) near ∂∞Σt, where || · ||0 denotes the operator norm, i.e. the biggest
(by absolute value) eigenvalue of the matrix.

• M is non-negative definite.

• ||M||0 decays quicker than O(e−(n−1)r) near ∂∞Σt.

10These boundaries are typically interpreted as proxies for black holes.
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• α = 1
2
.11

• ∃Ãµ such that A†
Iγ

I = −γIÃI and the first two conditions above continue to hold if Aµ
is replaced by Ãµ and α is replaced by −α.

Definition 3.2 (Modified connection). When acting on any spinor, ψ, define the modified
connection, ∇, by

∇µψ = Dµψ + iαγµψ + Aµψ and (84)

∇µψ = Dµψ − iαψγµ + ψγ0A†
µγ

0 = (∇µψ)
†γ0. (85)

Definition 3.3 (nµ and Σt). In any material that follows, whenever there is a timelile coordi-
nate, t, whose level sets are spacelilke hypersurface, denoted Σt, I will choose a vielbein so that
na, the future directed, unit normal to Σt, is e

0 ≡ nµ = δµ0.

Definition 3.4 (⟨·, ·⟩C∞
c
). Define an inner product on C∞

c by

⟨ψ, χ⟩C∞
c

=

∫
Σt

(
(∇Iψ)

†∇Iχ+ ψ†Mχ
)
dV. (86)

Proof. It has to be checked this really is a well-defined inner product.
⟨·, ·⟩C∞

c
is manifestly conjugate symmetric and linear in the second argument. Since M is as-

sumed to be non-negative definite and I, J, . . . are raised and lowered by δ, it is also immediate
that ⟨ψ, ψ⟩C∞

c
≥ 0. The only non-trivial part12 is checking that ⟨ψ, ψ⟩C∞

c
= 0 only occurs for

ψ = 0. I’ll do this using a technique from [35].
Suppose ⟨ψ, ψ⟩C∞

c
= 0.

∴ ∇Iψ = 0, or equivalently DIψ = −iαγIψ − AIψ, by equation 86.
It will help to re-write the derivative in terms of the Levi-Civita connection of h, say D(h).
DIψ = e µ′

I ∂µ′ψ − 1
4
ωµνIγ

µνψ = e 0
I ∂tψ + e i

I ∂iψ − 1
2
ω0JIγ

0γJψ − 1
4
ωJKIγ

JKψ.

From equation 1, one immediately sees that e0 = −Ndt and eI = e
(h)I
i (dxi + N idt), where

e
(h)I
i dxi is a vielbein for h. Then, e0 =

1
N
(∂t −N i∂i) and eI = e

(h)i
I ∂i = e

(h)
I because[

N Nke
(h)I
k

0 e
(h)I
i

] [ 1
N

− 1
N
N j

0 e
(h)j
I

]
=

[
1 0

0 δji

]
. (87)

∴ DIψ = e
(h)i
I ∂iψ − 1

2
ω0JIγ

0γJψ − 1
4
ωJKIγ

JKψ.

Since eI = e
(h)
I has no ∂t in it,

ωJKI =
1

2
(g(eI , [eJ , eK ])− g(eJ , [eK , eI ]) + g(eK , [eJ , eI ])) (88)

=
1

2
(h(e

(h)
I , [e

(h)
J , e

(h)
K ])− h(e

(h)
J , [e

(h)
K , e

(h)
I ]) + h(e

(h)
K , [e

(h)
J , e

(h)
I ])) (89)

= ω
(h)
JKI . (90)

∴ DIψ = e
(h)i
I ∂iψ − 1

2
ω0JIγ

0γJψ − 1
4
ω
(h)
JKIγ

JKψ = D
(h)
I ψ − 1

2
ω0JIγ

0γJψ.

∴ ∇Iψ = 0 is equivalent to D
(h)
I ψ = 1

2
ω0JIγJγ0ψ − iαγIψ − AIψ.

11It seems bizarre to carry around α instead of just setting its value to 1/2 throughout. I do this to explicitly
follow the effects of the cosmological constant; Λ = 0 would require α = 0. Furthermore, α = 1/2 only works
in the length scale convention I adopted in definition 2.2.

12This would be trivial too if M were positive definite, but I am only assuming non-negative definiteness.
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The matrix multiplying ψ on the RHS doesn’t really matter, so I’ll just denote it as AI .
ψ†ψ is a scalar on a Riemannian manifold. Let ||ψ||2S = ψ†ψ. Then, I get∣∣∂i(ln(||ψ||2S))∣∣ = 1

||ψ||2S

∣∣∂i(ψ†ψ)
∣∣ (91)

=
1

||ψ||2S

∣∣∣D(h)
i (ψ†ψ)

∣∣∣ (92)

≤ 1

||ψ||2S

(∣∣∣D(h)
i (ψ)†ψ

∣∣∣+ ∣∣∣ψ†D
(h)
i (ψ)

∣∣∣) (93)

≤ 2||ψ||S||D(h)
i ψ||S

||ψ||2S
by the Cauchy − Schwartz inequality (94)

=
2
∣∣∣∣∣∣e(h)Ii AIψ

∣∣∣∣∣∣
S

||ψ||S
(95)

≤ 2
∣∣∣∣∣∣e(h)Ii AI

∣∣∣∣∣∣
0
. (96)

Unpacking the absolute value, this is equivalent to

−2
∣∣∣∣∣∣e(h)Ii AI

∣∣∣∣∣∣
0
≤ ∂i(ln

(
||ψ||2S

)
) ≤ 2

∣∣∣∣∣∣e(h)Ii AI

∣∣∣∣∣∣
0
. (97)

Let K = supp(ψ). K is compact as ψ ∈ C∞
c .

∴ By the extreme value theorem, ∃ a point, x1 ∈ Σt, where ||ψ||S is maximised.

Likewise, there also exists a point in K where ||e(h)Ii AI ||0 is maximised.

Let Ci = maxx∈K∩Σt(||e
(h)I
i AI ||0).

Let x0 be a point on ∂K ∩ Σt, where ψ = 0.
Choose a curve, s, between x1 and x0, with finite length, l(s). The length is determined by the
Riemannian metric on Σt.

∴ −2

∫ x1

x0

∣∣∣∣∣∣e(h)Ii AI

∣∣∣∣∣∣
0
dsi ≤

∫ x1

x0

∂i(ln
(
||ψ||2S

)
)dsi ≤ 2

∫ x1

x0

∣∣∣∣∣∣e(h)Ii AI

∣∣∣∣∣∣
0
dsi. (98)

∴ −2l(s)
√
CiCjhij ≤ ln

(
||ψ||2S(x1)

)
− ln

(
||ψ||2S(x0)

)
≤ 2l(s)

√
CiCjhij. (99)

∴ ||ψ||2S(x0)e−2l(s)
√
CiCjhij ≤ ||ψ||2S(x1) ≤ ||ψ||2S(x0)e2l(s)

√
CiCjhij . (100)

Since ψ goes to zero as one approaches x0, both extremes of the inequality are just zero.
∴ ||ψ||2S(x1) = 0.
But ||ψ||2S(x1) is maximised as x1, so it must be that ||ψ||2S = 0 everywhere. But || · ||S is
positive definite, so this just implies that ψ = 0. □

Definition 3.5 (G). Define a linear operator, G : C∞
c → L2, by G : ψ 7→ γI∇Iψ.

The modified Dirac operator, G, will be the main subject of this subsection. Note that ψ being
compactly supported means G(ψ) is definitely in L2.

Lemma 3.6. If na is a future directed, unit normal to a spacelike surface, Σt, then for any
antisymmetric tensor, Mab,

naDbM
ba = D̃b(naM

ba), (101)

where D̃ is the induced covariant derivative on Σt.
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Proof. Let Hµν be the induced metric on Σt, i.e. Hab = gab + nanb.
Observe that nbM

ba is invariant under projection, i.e. because of Mab’s antisymmetry,
Ha

cnbM
cb = δacnbM

cb + nancnbM
bc = nbM

ab.
∴ The induced covariant derivative acts as

D̃b(naM
ba) = Hc

bH
b
dDc(naM

da) (102)

= Hc
bDc(naM

ba) (103)

= Hc
bDc(na)M

ba +Hc
bnaDcM

ba (104)

= KbaM
ba + δcbnaDcM

ba + ncnbnaDcM
ba where Kab = extrinsic curvature (105)

= naDbM
ba by M ba ′s antisymmetry, (106)

which is the claimed result. □

Lemma 3.7. For any ψ, χ ∈ C∞
c ,

⟨ψ, χ⟩C∞
c

=

∫
Σt

(γI∇Iψ)
†γJ∇J(χ) dV = ⟨G(ψ), G(χ)⟩L2 . (107)

Proof. Because Σt is assumed to be non-compact and the elements of C∞
c are compactly sup-

ported, I can freely integrate by parts without worrying about boundary terms.
But first, observe that because nµ ≡ −δµ0 in my choice of vielbein, the integrand is

(γI∇Iψ)
†γJ∇Jχ = −∇I(ψ)

†γIγJ∇Jχ (108)

= −∇I(ψ)
†(γ(IγJ) + γIJ)∇Jχ (109)

= ∇I(ψ)
†∇Iχ−∇I(ψ)

†γIJ∇Jχ (110)

= ∇I(ψ)
†∇Iχ−∇I(ψ)γ

0IJ∇Jχ (111)

= ∇I(ψ)
†∇Iχ−∇ν(ψ)γ

0νρ∇ρχ (112)

= ∇I(ψ)
†∇Iχ+ nµ∇ν(ψ)γ

µνρ∇ρχ. (113)

Then, the integral is

⟨G(ψ), G(χ)⟩L2 =

∫
Σt

(γI∇Iψ)
†γJ∇J(χ)dV (114)

=

∫
Σt

(
∇I(ψ)

†∇Iχ+ nµ∇ν(ψ)γ
µνρ∇ρχ

)
dV (115)

=

∫
Σt

(
∇I(ψ)

†∇Iχ+ nµDν(ψ)γ
µνρ∇ρχ− iαnµψγνγ

µνρ∇ρχ

+ nµψγ
0A†

νγ
0γµνρ∇ρχ

)
dV. (116)

By lemma 3.6, Stokes’ theorem and compact support, I can re-write the second term as∫
Σt

nµDν(ψ)γ
µνρ∇ρ(χ)dV =

∫
Σt

nµDν(ψγ
µνρ∇ρχ)dV −

∫
Σt

nµψγ
µνρDν(∇ρχ)dV (117)

=

∫
Σt

D̃ν(nµψγ
µνρ∇ρχ)dV −

∫
Σt

nµψγ
µνρDν(∇ρχ)dV (118)

= −
∫
Σt

nµψγ
µνρDν(∇ρχ)dV. (119)
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Substituting back, I get

⟨G(ψ), G(χ)⟩L2 =

∫
Σt

(
∇I(ψ)

†∇Iχ− nµψγ
µνρDν(∇ρχ)− iαnµψγνγ

µνρ∇ρχ

+ nµψγ
0A†

νγ
0γµνρ∇ρχ

)
dV (120)

=

∫
Σt

(
∇I(ψ)

†∇Iχ− nµψγ
µνρDνDρχ− iαnµψγ

µνργρDνχ− nµψγ
µνρDν(Aρ)χ

− nµψγ
µνρAρDνχ− iαnµψγνγ

µνρ∇ρχ+ nµψγ
0A†

νγ
0γµνρ∇ρχ

)
dV. (121)

Now I just have to simplify this term by term.

γµνρDνDρχ =
1

2
γµνρ[Dν , Dρ]χ by antisymmetry (122)

= −1

8
Rλσ

νργ
µνργλσχ (123)

= −1

8
Rλσ

νρ

(
γµνρλσ − 6γ

[µν
[σδ

ρ]
λ] + 6γ[µδν[σδ

ρ]
λ]

)
χ (124)

=
1

8
Rλσ

νρ

(
6γ

[µν
[σδ

ρ]
λ] − 6γ[µδν[σδ

ρ]
λ]

)
χ by the Bianchi identity (125)

=
3

4
Rλσ

νρ

(
γ[µνσδ

ρ]
λ − γ[µδνσδ

ρ]
λ

)
χ by antisymmetry (126)

=
1

4
Rλσ

νρ (γ
µν
σδ

ρ
λ + γνρσδ

µ
λ + γρµσδ

ν
λ)χ

− 1

4
Rλσ

νρ (γ
µδνσδ

ρ
λ + γνδρσδ

µ
λ + γρδµσδ

ν
λ)χ (127)

=
1

4

(
−Rσνγ

µνσ +Rµ
σνργ

νρσ +Rσργ
ρµσ +Rγµ −Rµνγν −Rµργρ

)
χ (128)

=
1

4
(0 + 0 + 0 +Rγµ − 2Rµνγν)χ by Bianchi identity and Rµν = Rνµ (129)

= −1

2

(
Rµν − 1

2
ηµνR

)
γνχ. (130)

γµνργρDνχ = −(n− 2)γµνDνχ. (131)

γνγ
µνρ∇ρχ = (n− 2)γµν∇νχ (132)

= (n− 2)γµνDνχ+ iα(n− 2)γµνγνχ+ (n− 2)γµνAνχ (133)

= (n− 2)γµνDνχ− iα(n− 1)(n− 2)γµχ+ (n− 2)γµνAνχ. (134)

γµνρ∇ρχ = γµνρDρχ+ iαγµνργρχ+ γµνρAρχ (135)

= γµνρDρχ− iα(n− 2)γµνχ+ γµνρAρχ. (136)
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Substituting these expressions back into equation 119, I get

⟨G(ψ), G(χ)⟩L2 =

∫
Σt

(
∇I(ψ)

†∇Iχ+
1

2
nµψ

(
Rµν − 1

2
ηµνR

)
γνχ+ iα(n− 2)nµψγ

µνDνχ

− nµψγ
µνρDν(Aρ)χ− nµψγ

µνρAρDνχ− iα(n− 2)nµψγ
µνDνχ

− α2(n− 1)(n− 2)nµψγ
µχ− iα(n− 2)nµψγ

µνAνχ

+ nµψγ
0A†

νγ
0γµνρDρχ− iα(n− 2)nµψγ

0A†
νγ

0γµνχ

+ nµψγ
0A†

νγ
0γµνρAρχ

)
dV (137)

=

∫
Σt

(
nµψ

((
1

2

(
Rµν − 1

2
ηµνR

)
γν − γµνρDν(Aρ)− α2(n− 1)(n− 2)γµ

− iα(n− 2)γµνAν − iα(n− 2)γ0A†
νγ

0γµν + γ0A†
νγ

0γµνρAρ

)
χ

+

(
iα(n− 2)γµν − γµνρAρ − iα(n− 2)γµν − γ0A†

ργ
0γµνρ

)
Dνχ

)
+ (∇Iψ)

†∇Iχ

)
dV. (138)

In the unit conventions I’m working, α = 1/2 and Λ = −1
2
(n− 1)(n− 2), so α2(n− 1)(n− 2)

is just −1
2
Λ.

∴ Applying the Einstein equation13 to 138 implies

⟨G(ψ), G(χ)⟩L2 =

∫
Σt

(
nµψ

((
4πT µνγν − γµνρDν(Aρ)− iα(n− 2)γµνAν

− iα(n− 2)γ0A†
νγ

0γµν + γ0A†
νγ

0γµνρAρ
)
χ

+
(
γµνρAρ − γ0A†

ργ
0γµνρ

)
Dνχ

)
+ (∇Iψ)

†∇Iχ

)
dV. (139)

I’ve chosen a vielbein where nµ = −δµ0, so this last equation simplifies to

⟨G(ψ), G(χ)⟩L2 =

∫
Σt

(
ψ†
((

− 4πT 0µγ0γµ + γIJDI(AJ) + iα(n− 2)γIAI

+ iα(n− 2)A†
Iγ

I − A†
Iγ

IJAJ
)
χ

+
(
γIJAJ + A†

Jγ
IJ
)
DJχ

)
+ (∇Iψ)

†∇Iχ

)
dV. (140)

Then, from definition 3.1 I immediately get

⟨G(ψ), G(χ)⟩L2 =

∫
Σt

(
(∇Iψ)

†∇Iχ+ ψ†Mχ
)
dV (141)

and the RHS is exactly what I defined to be ⟨ψ, χ⟩C∞
c
. □

Definition 3.8 (H). Define H to be the (metric space) completion of C∞
c under the metric

corresponding to ⟨·, ·⟩C∞
c
.

Lemma 3.9. G extends to a continuous (i.e. bounded) linear operator from H to L2 such that
⟨ψ, χ⟩H = ⟨G(ψ), G(χ)⟩L2.

13This is one of only two places where the Einstein equation is used in this work.
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Proof. G is already defined for ψ ∈ C∞
c . The points in H\C∞

c are equivalence classes of Cauchy
sequences.
Let {ψa}∞a=0 be a Cauchy sequence in C∞

c with limit in H\C∞
c .

Observe that by lemma 3.7, ||G(ψa)−G(ψb)||L2 = ||G(ψa − ψb)||L2 = ||ψa − ψb||C∞
c
.

∴ {G(ψa)}∞a=0 is a Cauchy sequence in L2.
∴ Since L2 is complete, ∃ lima→∞G(ψa) ∈ L2.
Extend the definition of G to H\C∞

c by defining G(lima→∞ ψa) = lima→∞G(ψa).
This definition is independent of my original choice of Cauchy sequence, {ψa}∞a=0, because if
I’d chosen a different Cauchy sequence with the same “limit,” {χa}∞a=0, then {G(ψa), G(χb)}
would be a Cauchy sequence in L2 by a similar computation to above. Hence, they would have
the same limit in L2.
Next, observe that this definition implies lemma 3.7 extends to H. In particular, suppose
ψ = lima→∞ ψa and χ = lima→∞ χa for Cauchy sequences14, {ψa}∞a=0, {χa}∞a=0 ∈ C∞

c . Then,

⟨ψ, χ⟩H = lim
a→∞

lim
b→∞

⟨ψa, χb⟩C∞
c

by the definition of ⟨·, ·⟩H (142)

= lim
a→∞

lim
b→∞

⟨G(ψa), G(χb)⟩L2 by lemma 3.7 (143)

=
〈
lim
a→∞

G(ψa), lim
b→∞

G(χb)
〉
L2

by ⟨·, ·⟩′L2s continuity (144)

= ⟨G(ψ), G(χ)⟩L2 by G′s definition. (145)

As an immediate consequence, I get

||G(ψ)||L2 = ||ψ||H, (146)

which implies that G is a continuous/bounded linear operator. □

Theorem 3.10. G is a continuous, linear isomorphism between H and L2.

Proof. Continuity and linearity are already given by lemma 3.9.
Next suppose G(ψ) = 0. Then, by equation 146, ||ψ||H = 0 and thus ψ = 0.
∴ G is injective.
Sadly, surjectivity is far harder to prove.
Let θ be an arbitrary element of L2.
Define Fθ : H → C by

Fθ(ψ) = ⟨θ,G(ψ)⟩L2 . (147)

Fθ is manifestly linear. It is also continuous/bounded because the Cauchy-Schwarz inequality
and lemma 3.9 imply |Fθ(ψ)| = |⟨θ,G(ψ)⟩L2 | ≤ ||θ||L2||G(ψ)||L2 = ||θ||L2||ψ||H.
∴ By the Riesz representation theorem, ∃φ ∈ H such that Fθ(ψ) = ⟨φ, ψ⟩H.
∴ Fθ(ψ) = ⟨G(φ), G(ψ)⟩L2 by lemma 3.9.
By equation 147, if follows that

⟨Φ, G(ψ)⟩L2 = 0 ∀ψ ∈ H, where Φ = θ −G(φ). (148)

Let G† be the formal adjoint to G. Then, equation 148 can equivalently be formally written as

0 =

∫
Σt

ψ†G†(Φ)dV. (149)

14Strictly speaking, ψ and χ are equivalence classes of Cauchy sequences, but I’m going to abuse notation by
denoting them as if they were ordinary spinors themselves.
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Since ψ is an arbitrary element of H - in particular it can be chosen to be supported in an
arbitrarily small neighbourhood of any point of Σt - equation 149 implies that Φ is a weak
solution to G†(Φ) = 0.
G† can be defined by formally integrating by parts15. Explicitly,

0 =

∫
Σt

(
γI∇I(ψ)

)†
ΦdV (150)

= −
∫
Σt

∇I(ψ)
†γIΦdV (151)

= −
∫
Σt

∇I(ψ̄)γ
0IΦdV (152)

=

∫
Σt

nµ∇ν(ψ̄)γ
µνΦdV (153)

=

∫
Σt

nµDν(ψ̄)γ
µνΦdV +

∫
Σt

nµψ̄
(
−iαγν + γ0A†

νγ
0
)
γµνΦdV. (154)

γµνΦ is antisymmetric, so lemma 3.6 applies, at least formally.

∴ 0 =

∫
Σt

nµψ̄
(
−γµνDν(Φ)− iα(n− 1)γµΦ + γ0A†

νγ
0γµνΦ

)
dV (155)

=

∫
Σt

ψ†
(
γIDI(Φ) + iα(n− 1)Φ− A†

Iγ
IΦ
)
dV. (156)

∴ G†Φ = γIDI(Φ) + iα(n− 1)Φ− A†
Iγ

IΦ. (157)

In definition 3.1, I’ve assumed16 ∃Ãµ such that A†
Iγ

I = −γIÃI , ÃI decays at the same rate as
Aµ and γIJÃJ is hermitian.

∴ Analogously to the previous steps, I can define an M̃ (with Aµ → Ãµ and α → −α) and a

connection, ∇̃µ = Dµ − iαγµ + Ãµ, to get

G†Φ = γI∇̃IΦ = G̃(Φ) and (158)

⟨G̃(ψ), G̃(χ)⟩L2 =

∫
Σt

((∇̃Iψ)
†∇̃Iχ+ ψ†M̃χ)dV (159)

for ψ, χ ∈ C∞
c .

First, suppose M̃ is positive definite, where I can provide a much more self-contained proof.
Currently, equation 159 is a purely formal expression based on the weak solution property
above. However, based on elliptic regularity arguments, one can show Φ ∈ H1

loc (I will defer to
theorems 8.8, 7.3 an 6.4 of [26] for the details).
Having established this regularity for Φ, some more concrete manipulations can be made.
For that, define a function, am, as follows.
Let d(·, ·) : Σt×Σt → R be the metric function (in the sense of a metric space, not a Riemannian
metric) induced on Σt by g.
Let a : R → R be any smooth function such that a(x) = 1 for x ∈ (0, 1) and a(x) = 0 for
x ∈ (2,∞).
Let q be an arbitrary point of Σt and define am : Σt → R by am : p 7→ a(d(q, p)/m).
From Σt’s assumed completeness and the Hopf-Rinow theorem, am ∈ C∞

c and hence amψ ∈ H.

15The integration by parts is only formal because Φ ∈ L2 may not be continuously differentiable a priori.
16This is the only place in this work where this assumption will be used.
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Then, by equation 148,

0 = ⟨G(amψ),Φ⟩L2 (160)

=

∫
Σt

amψ
†G†(Φ)dV (161)

=

∫
Σt

ψ†
(
G̃(amΦ)− γIDI(am)Φ

)
dV. (162)

Since ψ is an arbitrary element of H ⊃ C∞
c , this can only be true if G̃(amΦ) = γIDI(am)Φ.

For now, I’m assuming M̃ is positive definite, so I can form a Hilbert space, H̃, in the same
way as H. Then,

||amΦ− anΦ||H̃ = ||G̃(amΦ)− G̃(anΦ)||L2 by equation 159 (163)

= ||γIDI(am − an)Φ||L2 (164)

→ 0 as n,m→ ∞ (165)

because Φ ∈ L2 and the derivative, DI(am − an), is (by construction) only non-zero in some
“annulus” whose “inner radius” closer and closer to ∂∞Σt as n,m→ ∞.
∴ {amΦ}∞m=1 is a Cauchy sequence in H̃.

The limit, limm→∞ amΦ ∈ H̃, must be Φ itself17.
Finally, I get

||Φ||H̃ = lim
m→∞

||amΦ||H̃ (166)

= lim
m→∞

||G̃(amΦ)||L2 (167)

= lim
m→∞

||γIDI(am)Φ||L2 (168)

= 0 by the same reasoning as equation 165. (169)

∴ Φ = 0 and thus θ = G(φ).
Since θ was arbitrary, G must be surjective.
It remains to consider the case when M̃ is not positive-definite18.
The proof is a variation of some black magic from [35].
For this approach to the proof, let θ be an arbitrary element of L2.
From equation 159, if ψ ∈ C∞

c , then

||G̃(ψ)||2L2 =

∫
Σt

((∇̃Iψ)
†∇̃Iψ + ψ†M̃ψ)dV. (170)

By construction,

||G(ψ)||2L2 =

∫
Σt

((∇Iψ)
†∇Iψ + ψ†Mψ)dV (171)

is finite ∀ψ ∈ H.
∇̃Iψ = ∇Iψ− 2iαγIψ+ (ÃI −AI)ψ, i.e. the difference in the connections is only α → −α and

Aµ → Ãµ.

17Note that in all these Sobolev type spaces, functions are only defined up to a re-definition on sets of measure
zero.

18The connections in section 5 fall in this category. This is true even in the analogous calculation for
asymptotically flat spacetimes. As explained in appendix A of [36], this issue was completely ignored by
[18, 19] and dealt with incorrectly by [26]. As far as I know, this work is the first to try fix this problem.
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Let ϕ be an arbitrary element of C∞
c .

Let C∞
c (r0) be the set of compactly supported smooth functions whose support is within

Σt\{r ≥ 3r0}.
Choose r0 large enough so that ϕ ∈ C∞

c (r0) and so that the Fefferman-Graham coordinates are
valid (otherwise {r ≥ 3r0} would not be a meaningful set).
C∞
c (r0) is a subspace of H by inspection. Let H(r0) be the (metric space) completion of C∞

c (r0)
under the inner product of equation 86 (the same inner product as H).
∴ H(r0) is a closed, Hilbert space subspace of H.
Now I can define a functional, Sϕ : H(r0) → C by

Sϕ(ψ) =
1

2
||G̃(ψ)||2L2 − ⟨ψ, ϕ⟩L2 . (172)

The effective “cut-off” at r = 3r0, ∇I & ∇̃I differing only by α → −α & AI → ÃI and the
assumptions on ÃI in definition 3.1 ensure that Sϕ is finite.

Since G̃ = G† and (G†)† = G, the variational equation for minimising Sϕ is G(G̃(ψ)) = ϕ.
The main technical tool applied by [35] is theorem 9.5 of [37], which states that for any finite,
weakly lower semicontinuous functional, f(x), defined on a reflexive Banach space, E, if

lim
R→∞

sup
||x||E=R

f(x) → ∞, (173)

then f(x) has a minimum point. In particular, ∃ a weak solution to the variational equation.
By elliptic regularity, it’s then lifted to a strong solution with the same regularity as ϕ.
In my case, E = H(r0) and f = Sϕ.
S is finite by construction and every Hilbert space is reflexive. S is strictly convex by inspection
and then theorem 8.10 of [37] implies weak lower semicontinuity.
∴ Only the limit superior property remains to check.
For that, construct a spinor, ψ ∈ C∞

c , as follows. Let

ψ =


erψ0 for r0 < r < 2r0

0 for r < r0 − ϵ or r > 2r0 + ϵ

C∞ interpolation for all other r

(174)

for a constant spinor, ψ0. Choose r0 to be sufficiently large that this ψ is supported deep in
the asymptotic end19. Also, choose ϵ to be sufficiently small for the argument below.
Then, since ψ depends only on r by construction and it’s natural to separate out e1 = dr in
Fefferman-Graham coordinates, for r0 < r < 2r0 I get

DIψ = erδI1ψ0 −
1

4
erωµνIγ

µνψ0. (175)

∴ G(ψ) = er
(
γ1 − iα(n− 1)I − 1

4
ωµνIγ

Iγµν + γIAI

)
ψ0 and similarly (176)

G̃(ψ) = er
(
γ1 + iα(n− 1)I − 1

4
ωµνIγ

Iγµν + γIÃI

)
ψ0. (177)

Because of the decay that I’ve assumed for AI and ÃI in definition 3.1, γIAI and γIÃI are
completely dominated by the other terms in the G(ψ) and G̃(ψ) expressions.
Choose ψ0 so that (γ1 ± iα(n− 1)I)ψ0 ̸= 0 and then let ψ†

0ψ0 → ∞.

19As a corollary, ψ0 is now well defined; “constant” is a frame dependent concept for spinors, but there is a
natural frame deep in the asymptotic end which covers the end.
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∴ ||G(ψ)||L2 = ||ψ||H(r0) → ∞, but ||G̃(ψ)||L2 will also go off to infinity.
Applying the Cauchy-Schwartz inequality pointwise,

Sϕ(ψ) ≥
1

2
||G̃(ψ)||2L2 −

∫
supp(ϕ)

√
ψ†ψ

√
ϕ†ϕ dV. (178)

The 1st term is quadratic in ψ but the 2nd term is effectively linear in ψ, so S(ψ) → ∞ too20.
∴ The limit superior condition is satisfied.
∴ ∃ψϕ ∈ H(r0) such that G(G̃(ψϕ)) = ϕ. In fact, by ϕ’s compact support and elliptic regularity,
ψϕ ∈ C∞

c .

Furthermore, by lemma 3.7 G̃(ψϕ) ∈ H because

||G̃(ψϕ)||H = ||G(G̃(ψϕ))||L2 = ||ϕ||L2 <∞. (179)

Denote G̃(ψϕ) as Ψϕ.
In summary, I have shown that ∀ϕ ∈ C∞

c , ∃Ψϕ ∈ H such that G(Ψϕ) = ϕ.
Since C∞

c is dense in L2, ∃ a Cauchy sequence, {θm}∞m=0 ⊆ C∞
c , which converges to θ in L2.

Given {θm}∞m=0, construct the corresponding sequence, {Ψθm}∞m=0 ∈ H.
{Ψθm}∞m=0 ∈ H is a Cauchy sequence because

||Ψθm −Ψθn||H = ||G(Ψθm −Ψθn)||L2 = ||θm − θn||L2 → 0. (180)

Let Ψ = limm→∞Ψθm ∈ H. By theorem 3.9, G is bounded/continuous. Thus,

||G(Ψ)− θ||L2 =
∣∣∣∣∣∣ lim
m→∞

G(Ψθm)− θ
∣∣∣∣∣∣
L2

=
∣∣∣∣∣∣ lim
m→∞

θm − θ
∣∣∣∣∣∣
L2

= 0. (181)

∴ G(Ψ) = θ.
Since θ is an arbitrary element of L2, it follows that G is surjective. □

3.2 Main theorem

The main result of this work is theorem 3.19, but I’ll still need a few more definitions and
lemmas to set it up.

Definition 3.11 (Q(ε)). For a spinor, ε, define Q(ε) by

Q(ε) =

∫
Σt

nµDν(E
νµ)dV, where (182)

Eµν = ε̄γµνρ∇ρε+ c.c = ε̄γµνρ∇ρε−∇ρ(ε̄)γ
µνρε (183)

and nµ is a future directed unit normal to constant t surfaces, Σt.

Like Q, Eµν also depends on ε. But, I’ll suppress that dependence in situations where there is
no ambiguity.

Lemma 3.12. Q(ε) is conserved ∀ε.

Proof. Consider two values of t, say t1 and t2. Then,

Q(ε)|t2 −Q(ε)|t1 =
∫
Σt2

nµDν(E
νµ)dV −

∫
Σt1

nµDν(E
νµ)dV (184)

=

∫ t2

t1

∫
Σt

Dµ(DνE
νµ)dV dt by Stokes′ theorem. (185)

20I could even choose r0 big enough so that the second term is just zero.
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The integrand is however zero because

Dµ(DνE
νµ) =

1

2
[Dµ, Dν ]E

νµ as Eνµ is antisymmetric (186)

=
1

2
(Rν

ρµνE
ρµ +Rµ

ρµνE
νρ) (187)

= −RµνE
µν (188)

= 0 as Rµν = Rνµ but Eµν = −Eνµ. (189)

Hence the value of Q(ε) does not depend on t. □

Lemma 3.13. Choose a vielbein where nµ = δµ0 ≡ e0 and e1 = dr. Then,

Q(ε) =

∫
∂∞Σt

E01dA and (190)

E01 = ε†γ1γADAε+DA(ε)
†γAγ1ε− 2iα(n− 2)ε†γ1ε+ ε†γ1γAAAε+ ε†A†

Aγ
Aγ1ε. (191)

Proof. Let la denote the normal to constant r surfaces. Then,

Q(ε) =

∫
Σt

nµDν(E
νµ)dV (192)

=

∫
Σt

D̃ν(nµE
νµ)dV by lemma 3.6 (193)

=

∫
∂∞Σt

lνnµE
νµdA by Stokes′ theorem (194)

= −
∫
∂∞Σt

E10dA by my vielbein choice (195)

=

∫
∂∞Σt

E01dA, (196)

which proves the first half of the lemma. Meanwhile, from equation 183,

E01 = ε̄γ01µ∇µε−∇µ(ε̄)γ
01µε (197)

= ε̄γ0γ1γA∇Aε−∇A(ε̄)γ
0γ1γAε (198)

= ε†γ1γA∇Aε−∇A(ε)
†γ1γAε (199)

= ε†γ1γADAε+ iαε†γ1γAγAε+ ε†γ1γAAAε

−DA(ε)
†γ1γAε− iαε†γAγ

1γAε− ε†A†
Aγ

1γAε (200)

= ε†γ1γADAε+DA(ε)
†γAγ1ε− 2iα(n− 2)ε†γ1ε+ ε†γ1γAAAε+ ε†A†

Aγ
Aγ1ε, (201)

which proves the second half of the lemma. □

Lemma 3.13 evaluated the boundary expression for Q(ε) when applying lemma 3.6. In the
next lemma, I’ll find the bulk expression for the same quantity.

Lemma 3.14. Assuming the Einstein equation is satisfied,

Q(ε) = 2

∫
Σt

(
(∇Iε)

†∇Iε− (γI∇Iε)
†γJ∇Jε+ ε†Mε

)
dV. (202)

21



Proof. In accordance with equations 182 and 183, I’ll begin by expanding DνE
νµ.

DνE
νµ = Dν (ε̄γ

νµρ∇ρε−∇ρ(ε̄)γ
νµρε) (203)

= Dν(ε̄)γ
νµρ∇ρε+ ε̄γνµρDν(∇ρε)−Dν(∇ρε̄)γ

νµρε−∇ρ(ε̄)γ
νµρDνε (204)

= ∇ν(ε̄)γ
νµρ∇ρε+ iαε̄γνγ

νµρ∇ρε− ε̄γ0A†
νγ

0γνµρ∇ρε+ ε̄γνµρDν(∇ρε)

−Dν(∇ρε̄)γ
νµρε−∇ρ(ε̄)γ

νµρ∇νε+ iα∇ρ(ε̄)γ
νµργνε+∇ρ(ε̄)γ

νµρAνε (205)

= 2∇ν(ε̄)γ
νµρ∇ρε− iα(n− 2)ε̄γµν∇νε− ε̄γ0A†

νγ
0γνµρ∇ρε+ ε̄γνµρDν(∇ρε)

−Dν(∇ρε̄)γ
νµρε− iα(n− 2)∇ν(ε̄)γ

µνε+∇ρ(ε̄)γ
νµρAνε (206)

= 2∇ν(ε̄)γ
νµρ∇ρε− iα(n− 2)ε̄γµνDνε+ α2(n− 2)ε̄γµνγνε− iα(n− 2)ε̄γµνAνε

− ε̄γ0A†
νγ

0γνµρDρε− iαε̄γ0A†
νγ

0γνµργρε− ε̄γ0A†
νγ

0γνµρAρε+ ε̄γνµρDνDρε

+ iαε̄γνµργρDνε+ ε̄γνµρDν(Aρ)ε+ ε̄γνµρAρDνε−DνDρ(ε̄)γ
νµρε

+ iαDν(ε̄)γργ
νµρε−Dν(ε̄)γ

0A†
ργ

0γνµρε− ε̄γ0Dν(A
†
ρ)γ

0γνµρε

− iα(n− 2)Dν(ε̄)γ
µνε− α2(n− 2)ε̄γνγ

µνε− iα(n− 2)ε̄γ0A†
νγ

0γµνε

+Dρ(ε̄)γ
νµρAνε− iαε̄γργ

νµρAνε+ ε̄γ0A†
ργ

0γνµρAνε. (207)

Some of these terms can be simplified, as follows.

α2(n− 2)ε̄γµνγνε = −α2(n− 1)(n− 2)ε̄γµε. (208)

−iαε̄γ0A†
νγ

0γνµργρε = iα(n− 2)ε̄γ0A†
νγ

0γνµε. (209)

ε̄γνµρDνDρε =
1

2

(
Rµν − 1

2
Rηµν

)
ε̄γνε by the same steps as equation 130. (210)

iαε̄γνµργρDνε = −iα(n− 2)ε̄γνµDνε. (211)

−DνDρ(ε̄)γ
νµρε =

1

2

(
Rµν − 1

2
Rηµν

)
ε̄γνε by taking equation 210′s conjugate. (212)

iαDν(ε̄)γργ
νµρε = −iα(n− 2)Dν(ε̄)γ

νµε. (213)

−α2(n− 2)ε̄γνγ
µνε = −α2(n− 1)(n− 2)ε̄γµε. (214)

−iαε̄γργ
νµρAνε = iα(n− 2)ε̄γνµAνε. (215)

Substituting these back up,

DνE
νµ = 2∇ν(ε̄)γ

νµρ∇ρε− iα(n− 2)ε̄γµνDνε− α2(n− 1)(n− 2)ε̄γµε− iα(n− 2)ε̄γµνAνε

− ε̄γ0A†
νγ

0γνµρDρε+ iα(n− 2)ε̄γ0A†
νγ

0γνµε− ε̄γ0A†
νγ

0γνµρAρε

+
1

2

(
Rµν − 1

2
Rηµν

)
ε̄γνε− iα(n− 2)ε̄γνµDνε+ ε̄γνµρDν(Aρ)ε+ ε̄γνµρAρDνε

+
1

2

(
Rµν − 1

2
Rηµν

)
ε̄γνε− iα(n− 2)Dν(ε̄)γ

νµε−Dν(ε̄)γ
0A†

ργ
0γνµρε

− ε̄γ0Dν(A
†
ρ)γ

0γνµρε− iα(n− 2)Dν(ε̄)γ
µνε− α2(n− 1)(n− 2)ε̄γµε

− iα(n− 2)ε̄γ0A†
νγ

0γµνε+Dρ(ε̄)γ
νµρAνε+ iα(n− 2)ε̄γνµAνε

+ ε̄γ0A†
ργ

0γνµρAνε (216)

In the unit conventions I’m working, α = 1/2 and Λ = −1
2
(n− 1)(n− 2), so α2(n− 1)(n− 2)
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is just −1
2
Λ. Using that in conjunction with the Einstein equation21, I get

DνE
νµ = ε̄(8πT µνγν − iα(n− 2)γµνAν + iα(n− 2)γ0A†

νγ
0γνµ − γ0A†

νγ
0γνµρAρ

+ γνµρDνAρ − γ0Dν(A
†
ρ)γ

0γνµρ − iα(n− 2)γ0A†
νγ

0γµν + iα(n− 2)γνµAν

+ γ0A†
ργ

0γνµρAν)ε+ 2∇ν(ε̄)γ
νµρ∇ρε

+ ε̄(−iα(n− 2)γµν − γ0A†
ργ

0γρµν − iα(n− 2)γνµ + γνµρAρ)Dνε

+Dν(ε̄)(−iα(n− 2)γνµ − γ0A†
ργ

0γνµρ − iα(n− 2)γµν + γρµνAρ)ε (217)

= ε̄(8πT µνγν − 2iα(n− 2)γµνAν − 2iα(n− 2)γ0A†
νγ

0γµν − 2γ0A†
νγ

0γνµρAρ

+ γνµρDνAρ − γ0Dν(A
†
ρ)γ

0γνµρ)ε+ 2∇ν(ε̄)γ
νµρ∇ρε

+ ε̄(γνµρAρ − γ0A†
ργ

0γρµν)Dνε+Dν(ε̄)(γ
ρµνAρ − γ0A†

ργ
0γνµρ)ε. (218)

I’m working in a vielbein where nµ ≡ −δµ0. Hence,

nµDνE
νµ = −ε̄(8πT 0νγν − 2iα(n− 2)γ0νAν − 2iα(n− 2)γ0A†

νγ
0γ0ν − 2γ0A†

νγ
0γν0ρAρ

+ γν0ρDνAρ − γ0Dν(A
†
ρ)γ

0γν0ρ)ε− 2∇ν(ε̄)γ
ν0ρ∇ρε

− ε̄(γν0ρAρ − γ0A†
ργ

0γρ0ν)Dνε−Dν(ε̄)(γ
ρ0νAρ − γ0A†

ργ
0γν0ρ)ε (219)

= ε†(8πT 0µγ0γµ + 2iα(n− 2)γIAI + 2iα(n− 2)A†
Iγ

I − 2A†
Iγ

IJAJ

+ γIJDIAJ −DI(A
†
J)γ

IJ)ε+ 2∇I(ε)
†γIJ∇Jε

+ ε†(γIJAJ − A†
Jγ

JI)DIε−DI(ε)
†(γIJAJ − A†

Jγ
JI)ε. (220)

Then, by the definition of M and the γIJAJ = (γIJAJ)
† assumption - see definition 3.1 - this

expression reduces to

nµDνE
νµ = ε†(8πT 0µγ0γµ + 2iα(n− 2)γIAI + 2iα(n− 2)A†

Iγ
I − 2A†

Iγ
IJAJ

+ γIJDIAJ −DI(γ
JIAJ))ε+ 2∇I(ε)

†γIJ∇Jε+ 0− 0 (221)

= ε†(8πT 0µγ0γµ + 2iα(n− 2)γIAI + 2iα(n− 2)A†
Iγ

I − 2A†
Iγ

IJAJ + 2γIJDIAJ)ε

+ 2∇I(ε)
†γIJ∇Jε (222)

= 2ε†Mε+ 2∇I(ε)
†γIJ∇Jε. (223)

The second term can be re-written as

∇I(ε)
†γIJ∇Jε = ∇I(ε)

†(γIγJ + δIJI)∇Jε = −(γI∇Iε)
†γJ∇Jε+∇I(ε)

†∇Iε. (224)

∴ nµDνE
νµ = 2(ε†Mε− (γI∇Iε)

†γJ∇Jε+∇I(ε)
†∇Iε), (225)

which is exactly the claimed integrand. □

Definition 3.15 (Background Killing spinor). Let εk denote a Killing spinor of the background
metric. In particular, εk is defined to satisfy

Dµεk + iαγµεk = 0, (226)

where Dµ is the Levi-Civita connection of the background metric22,

ḡ = dr ⊗ dr + e2r
(
f(0)mn + e−rf(1)mn + e−2rf(2)mn + · · · e−(n−2)rf(n−2)mn

)
dxm ⊗ dxn. (227)

Similarly, denote the vielbeins23 associated to ḡ as ēµ and ēµ.

21This is one of only two places the Einstein equation is used in this work.
22As explained after equation 8, in asymptotically AdS spaces there is a subtlety with the powers of e−r

when n ≤ 5. In these cases, I will always take ḡ to include the higher order terms in

−
(
1 + 1

4e
−2r
)2

dt⊗ dt+
(
1− 1

4e
−2r
)2
gSn−2 .

23When the meaning is clear or the distinction is unimportant, I use the word “vielbein” to refer to both the
vielbein and the inverse vielbein.
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Not every choice of f(0)mn will lead to a background metric that admits a non-zero solution
to equation 226. However, the Witten-style proof - as far as I know - can only be applied to
background metrics that do admit a non-zero εk. I won’t attempt to classify such backgrounds
- interested readers may consult [38, 39] and references therein for this problem - however some
general remarks will be made in sections 4 as I consider various possibilities.

There is also a more subtle issue with background Killing spinors. εk may only be defined
in an open neighbourhood of the “boundary” at infinity or equation 226 may only have a so-
lution in such a region. This in itself is not a problem because equation 226 will only really be
required in an open neighbourhood of infinity, sayM , and εk can be extended to a spinor on all
of Σt by multiplying it with a smooth function that’s 1 near infinity but falls to zero withinM .
The problem is that (M, ḡ) may admit multiple spin structures and the spin structure which
admits a non-zero solution, εk, may not be compatible with the spin structure on (M, g). This
is exactly the issue behind the AdS soliton [40, 41], which I’ll discuss again in section 4. But
in short, like others working on similar problems [13], my proof will only work when the spin
structure admitting a non-zero εk on M is compatible with a spin structure on M .

Lemma 3.16. If ē
(f̄)m
M ∂m is a vielbein for f̄ , then

eM = e−rē
(f̄)m
M

(
∂m − 1

2
e−(n−1)rf(n−1)mpf̄

pn∂n +O(e−nr)

)
, (228)

together with ∂r, forms a vielbein for g.

Proof. The candidate vielbein satisfies

g(eM , eN) = e−2rē
(f̄)m
M ē

(f̄)n
N g

(
∂m − 1

2
e−(n−1)rf(n−1)mpf̄

pq∂q +O(e−nr),

∂n −
1

2
e−(n−1)rf(n−1)nrf̄

rs∂s +O(e−nr)

)
(229)

= e−2rē
(f̄)m
M ē

(f̄)n
N

(
g(∂m, ∂n)−

1

2
e−(n−1)rf(n−1)mpf̄

pqg(∂q, ∂n)

− 1

2
e−(n−1)rf(n−1)nrf̄

rsg(∂m, ∂s) +O(e−nr)O(g)

)
(230)

= ē
(f̄)m
M ē

(f̄)n
N

(
fmn −

1

2
e−(n−1)rf(n−1)mpf̄

pqfqn

− 1

2
e−(n−1)rf(n−1)nrf̄

rsfms +O(e−nr)

)
(231)

= ē
(f̄)m
M ē

(f̄)n
N

(
fmn −

1

2
e−(n−1)rf(n−1)mpf̄

pqf̄qn

− 1

2
e−(n−1)rf(n−1)nrf̄

rsf̄ms +O(e−nr)

)
(232)

= ē
(f̄)m
M ē

(f̄)n
N

(
fmn −

1

2
e−(n−1)rf(n−1)mn −

1

2
e−(n−1)rf(n−1)nm +O(e−nr)

)
(233)

= ē
(f̄)m
M ē

(f̄)n
N (f̄mn +O(e−nr)) (234)

= ηMN +O(e−nr), (235)

which is all that’s required because I’m leaving the O(e−nr) part undetermined. □

Lemma 3.17. If εk is O(er/2) near ∂∞Σt, then ∇Iεk ∈ L2.
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Proof. First note that to be in L2, an object must decay faster than O(e−(n−2)r/2) because the
integration measure over Σt is O(e

(n−2)r).
Next, recall that given a vielbein, e µ′

µ ∂µ′ , the spin connection coefficients are defined as

ωνρµ =
1

2
(g(eµ, [eν , eρ])− g(eν , [eρ, eµ]) + g(eρ, [eν , eµ])) . (236)

In particular, when the one-form index is 1, corresponding to r,

ωµν1 =
1

2
(g(e1, [eµ, eν ])− g(eµ, [eν , e1]) + g(eν , [eµ, e1])) (237)

=
1

2
(g(∂r, [eµ, eν ])− g(eµ, [eν , ∂r]) + g(eν , [eµ, ∂r])) . (238)

Also, since εk is a background Killing spinor, from equation 226 and lemma 3.16, I get

DMεk = e m
M ∂mεk −

1

4
ωµνMγ

µνεk (239)

= (e m
M − ē m

M )∂mεk −
1

4
(ωµνM − ωµνM)γµνεk − iαγMεk (240)

=

(
−1

2
e−nrf(n−1)npf̄

pmē
(f̄)n
M +O(e−(n+1)r)

)
∂mεk −

1

4
(ωµνM − ωµνM)γµνεk

− iαγMεk by lemma 3.16 (241)

and D1εk = ∂rεk −
1

4
ωµν1γ

µνεk (242)

= −1

4
(ωµν1 − ωµν1)γ

µνεk − iαγ1εk. (243)

Therefore, with the modified connection,

∇Mεk =

(
−1

2
e−nrf(n−1)npf̄

pmē
(f̄)n
M +O(e−(n+1)r)

)
∂mεk −

1

4
(ωµνM − ωµνM)γµνεk

+ AMεk and (244)

∇1εk = −1

4
(ωµν1 − ωµν1)γ

µνεk + A1εk. (245)

In definition 3.1 I’m assuming ||AI ||0 decays as O(e−(n−1)r) near ∂∞Σt, so AIεk = O(e−(n−3/2)r).
Since I’m assuming n ≥ 4, this is easily a faster decay than O(e−(n−2)r/2).
∴ AIεk ∈ L2.
Partial derivatives don’t change the order of exponentials, so I have

−1

2
e−nrf(n−1)npf̄

pmē
(f̄)n
M ∂mεk = O(e−(n−1/2)r). (246)

This is a quicker decay than AIεk, so −1
2
e−nrf(n−1)mpf̄

pnē
(f̄)m
M ∂mεk ∈ L2 too.

For the terms with the connection coefficients, I’ll have to split into different cases for µ and
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ν. First consider (µ, ν) = (N,P ).

ωNPM − ωNPM =
1

2
(g(eM , [eN , eP ])− g(eN , [eP , eM ]) + g(eP , [eN , eM ]))

− 1

2
(ḡ(ēM , [ēN , ēP ])− ḡ(ēN , [ēP , ēM ]) + ḡ(ēP , [ēN , ēM ])) (247)

=
1

2

((
ḡ +O(e−(n−3)r)

)(
ēM +O(e−nr), [ēN +O(e−nr), ēP +O(e−nr)]

)
−
(
ḡ +O(e−(n−3)r)

)(
ēN +O(e−nr), [ēP +O(e−nr), ēM +O(e−nr)]

)
+
(
ḡ +O(e−(n−3)r)

)(
ēP +O(e−nr), [ēN +O(e−nr), ēM +O(e−nr)]

))
− 1

2
(ḡ(ēM , [ēN , ēP ])− ḡ(ēN , [ēP , ēM ]) + ḡ(ēP , [ēN , ēM ])) (248)

= O(e−nr) since g is O(e2r) and ēM is O(e−r). (249)

When the one-form index is 1, I can use [eM , eN ] ∈ span({∂m}) and ∂r ⊥ span({∂m}) to get
rid of a term. Then, I similarly get

ωMN1 − ωMN1 =
1

2
(g(∂r, [eM , eN ])− g(eM , [eN , ∂r]) + g(eN , [eM , ∂r]))

− 1

2
(ḡ(∂r, [ēM , ēN ])− ḡ(ēM , [ēN , ∂r]) + ḡ(ēN , [ēM , ∂r])) (250)

=
1

2
(0− g(eM , [eN , ∂r]) + g(eN , [eM , ∂r]))

− 1

2
(0− ḡ(ēM , [ēN , ∂r]) + ḡ(ēN , [ēM , ∂r])) (251)

=
1

2

((
ḡ +O(e−(n−3)r)

)(
ēN +O(e−nr), [ēM +O(e−nr), ∂r]

)
−
(
ḡ +O(e−(n−3)r)

)(
ēN +O(e−nr), [ēM +O(e−nr), ∂r]

))
− 1

2
(ḡ(ēN , [ēM , ∂r])− ḡ(ēM , [ēN , ∂r])) (252)

= O(e−(n−1)r). (253)

The other case is when one of µ or ν is 1. By the antisymmety in these two indices, I can
assume µ = 1 and ν = N . Then,

ω1NM − ω1NM =
1

2
(g(eM , [∂r, eN ])− g(∂r, [eN , eM ]) + g(eN , [∂r, eM ]))

− 1

2
(ḡ(ēM , [∂r, ēN ])− ḡ(∂r, [ēN , ēM ]) + ḡ(ēN , [∂r, ēM ])) (254)

=
1

2
(g(eM , [∂r, eN ]) + g(eN , [∂r, eM ])− ḡ(ēM , [∂r, ēN ])− ḡ(ēN , [∂r, ēM ])) (255)

= O(e−(n−1)r) by the same logic as above. (256)

The final case is

ω1M1 − ω1M1 =
1

2
(g(∂r, [∂r, eM ])− g(∂r, [eM , ∂r]) + g(eM , [∂r, ∂r]))

− 1

2
(ḡ(∂r, [∂r, ēM ])− ḡ(∂r, [ēM , ∂r]) + ḡ(ēM , [∂r, ∂r])) (257)

=
1

2
(0− 0 + 0)− 1

2
(0− 0 + 0) (258)

= 0. (259)
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In summary, the connection coefficient difference terms are at least O(e−(n−1)r) in their decay.
When combined with the assumed O(er/2) growth of εk, I get a O(e

−(n−3/2)r) decay, which is
again fast enough to get into L2.
∴ I can conclude that ∇Iεk is a sum of terms that are in L2. □

Corollary 3.17.1. γI∇Iεk ∈ L2.

Proof. The gamma matrices are O(1). □

Definition 3.18 (pM). For future notational convenience, define

pM = e
(f(0))m

M e
(f(0))n

0 f(n−1)mn + δM0f
mn
(0) f(n−1)mn (260)

= δM0f̃
mn
(0) f(n−1)mn + δAM e

(f(0))m

A nn(0)f(n−1)mn. (261)

I’ve chosen the letter p for this quantity because it looks like a relativistic momentum vector
if one views f(n−1)mn like an energy-momentum tensor. This is especially so given its 0th
component is the integrand of equation 81. Furthermore, this is also qualitatively pM ’s role in
the positive energy theorem proven immediately below. Finally, note that since fmn(0) f(n−1)mn

is 0 in vacuum [33], pM is just e
(f(0))m

M nn(0)f(n−1)mn in that case.

Theorem 3.19 (Positive energy theorem). If the Einstein equation holds and ∃ a non-zero εk
with εk being O(er/2) near ∂∞Σt, then ∃ϵ such that γI∇Iε = 0 and

Q(ε) =
n− 1

2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x

+ e(n−2)r

∫
∂∞Σt

ε†k

(
γ1γAAA + A†

Aγ
Aγ1
)
εk

√
ι∗f(0)d

n−2x (262)

= 2

∫
Σt

(
(∇Iε)

†∇Iε+ ε†Mε
)
dV (263)

≥ 0. (264)

Proof. By corollary 3.17.1 and theorem 3.10, ∃Ψ ∈ H such that G(Ψ) = γI∇Iεk.
Let ε = εk −Ψ, so that

γI∇Iε = 0. (265)

Let {ψa}∞a=0 be a Cauchy sequence in C∞
c whose limit is Ψ.

Let εa = εk − ψa. Then, lima→∞ εa = ε.
By lemma 3.13,

Q(εa) =

∫
∂∞Σt

E01(εa)dA. (266)

However, since ψa is compactly supported,

Q(εa) =

∫
∂∞Σt

E01(εk)dA, (267)

which does not actually depend on a.

∴ lim
a→∞

Q(εa) =

∫
∂∞Σt

E01(εk)dA. (268)
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I’ll evaluate the RHS before finding the limit on the LHS.
From equation 201,

E01(ε) = ε†γ1γADAε+DA(ε)
†γAγ1ε− 2iα(n− 2)ε†γ1ε+ ε†γ1γAAAε+ ε†A†

Aγ
Aγ1ε. (269)

Let (ι⋆f)mn denote the pullback of fmn to the constant t surface. Then, the measure, dA, is

dA =
√

det(ι⋆(e2rfmn))dx
2 · · · dxn−1x (270)

= e(n−2)r
√
ι⋆f(0) +O(e−r) dn−2x (271)

= e(n−2)r
√
ι⋆f(0) d

n−2x to leading order. (272)

This e(n−2)r growth and the O(er/2) growth of εk means I only need to keep terms that decay
as O(e−(n−1)r) or slower in the matrices in E01(εk).
AA is assumed to decay as O(e−(n−1)r) in definition 3.1, so I just keep those terms as they are.
Consider the derivative terms next.

DAεk = e m
A ∂mεk −

1

4
ωµνAγ

µνεk (273)

= (e m
A − ē m

A )∂mεk −
1

4
(ωµνA − ωµνA)γ

µνεk − iαγAεk. (274)

From equations 249 and 256, I only need to keep the connection coefficient difference terms
when one of µ or ν is 1.
Likewise, from lemma 3.16, e m

A − ē m
A is O(e−nr), so I can ignore that term too.

∴ DAεk → −1

2
(ω1MA − ω1MA)γ

1γMεk − iαγAεk. (275)

∴ γADAεk → −1

2
(ω1MA − ω1MA)γ

Aγ1γMεk − iαγAγAεk (276)

=
1

2
(ω1MA − ω1MA)γ

1γAγMεk + iα(n− 2)εk. (277)

∴ ε†kγ
1γADAεk →

1

2
(ω1MA − ω1MA)ε

†
kγ

1γ1γAγMεk + iα(n− 2)ε†kγ
1εk (278)

= −1

2
(ω1MA − ω1MA)ε

†
kγ

AγMεk + iα(n− 2)ε†kγ
1εk. (279)

From equation 255

ω1MA − ω1MA =
1

2
(g(eA, [∂r, eM ]) + g(eM , [∂r, eA])− ḡ(ēA, [∂r, ēM ])− ḡ(ēM , [∂r, ēA])). (280)

This is symmetric in A and M . Hence,

− 1

2
(ω1MA − ω1MA)ε

†
kγ

AγMεk

= −1

4
(g(eA, [∂r, eM ]) + g(eM , [∂r, eA])− ḡ(ēA, [∂r, ēM ])− ḡ(ēM , [∂r, ēA]))ε

†
kγ

AγMεk (281)

= −1

4
(g(eA, [∂r, eB]) + g(eB, [∂r, eA])− ḡ(ēA, [∂r, ēB])− ḡ(ēB, [∂r, ēA]))ε

†
kγ

AγBεk

− 1

4
(g(eA, [∂r, e0]) + g(e0, [∂r, eA])− ḡ(ēA, [∂r, ē0])− ḡ(ē0, [∂r, ēA]))ε

†
kγ

Aγ0εk (282)

=
1

2
δAB(g(eA, [∂r, eB])− ḡ(ēA, [∂r, ēB]))ε

†
kεk

− 1

4
(g(eA, [∂r, e0]) + g(e0, [∂r, eA])− ḡ(ēA, [∂r, ē0])− ḡ(ē0, [∂r, ēA]))ε

†
kγ

Aγ0εk. (283)
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To go further, I’ll need more concrete expressions for g(eM , [∂r, eN ]) and ḡ(ēM , [∂r, ēN ]).
Using lemma 3.16,

g(eM , [∂r, eN ])

= g

(
e−rē

(f̄)m
M ∂m − 1

2
e−nrē

(f̄)m
M f(n−1)mpf̄

pn∂n +O(e−(n+1)r),

− e−rē
(f̄)q
N ∂q + e−r∂r

(
ē
(f̄)q
N

)
∂q +

n

2
e−nrē

(f̄)q
N f(n−1)qrf̄

rs∂s +O(e−(n+1)r)

)
(284)

= e−2rē
(f̄)m
M ē

(f̄)q
N

(
− g(∂m, ∂q) +

1

2
e−(n−1)rf(n−1)mpf̄

png(∂n, ∂q)

+
n

2
e−(n−1)rf(n−1)qrf̄

rsg(∂m, ∂s) +O(e−nr)O(g)

)
+ e−2rē

(f̄)m
M ∂r

(
ē
(f̄)q
N

)(
g(∂m, ∂q)−

1

2
e−(n−1)rf(n−1)mpf̄

png(∂n, ∂q) +O(e−nr)O(g)

)
(285)

= ē
(f̄)m
M ē

(f̄)q
N

(
− f̄mq − e−(n−1)rf(n−1)mq +

1

2
e−(n−1)rf(n−1)mpf̄

pnf̄nq

+
n

2
e−(n−1)rf(n−1)qrf̄

rsf̄ms +O(e−nr)

)
+ ē

(f̄)m
M ∂r

(
ē
(f̄)q
N

)(
f̄mq + e−(n−1)rf(n−1)mq −

1

2
e−(n−1)rf(n−1)mpf̄

pnf̄nq +O(e−nr)

)
(286)

= −ηMN + ē
(f̄)m
M ∂r

(
ē
(f̄)q
N

)
f̄mq +

n− 1

2
e−(n−1)rē

(f̄)m
M ē

(f̄)n
N f(n−1)mn +O(e−nr). (287)

Likewise,

ḡ(ēM , [∂r, ēN ]) = ḡ
(
e−rē

(f̄)m
M ∂m,−e−rē

(f̄)n
N ∂n + e−r∂r

(
ē
(f̄)n
N ∂n

))
(288)

= −ē(f̄)mM ē
(f̄)n
N f̄mn + ē

(f̄)m
M ∂r

(
ē
(f̄)n
N

)
f̄mn (289)

= −ηMN + ē
(f̄)m
M ∂r

(
ē
(f̄)n
N

)
f̄mn. (290)

∴ g(eM , [∂r, eN ])− ḡ(ēM , [∂r, ēN ]) =
n− 1

2
e−(n−1)rē

(f̄)m
M ē

(f̄)n
N f(n−1)mn +O(e−nr) (291)

Substituting this back into equation 283, to leading order I get

− 1

2
(ω1MA − ω1MA)ε

†
kγ

AγMεk

=
1

2
δAB(g(eA, [∂r, eB])− ḡ(ēA, [∂r, ēB]))ε

†
kεk

− 1

4
(g(eA, [∂r, e0]) + g(e0, [∂r, eA])− ḡ(ēA, [∂r, ē0])− ḡ(ē0, [∂r, ēA]))ε

†
kγ

Aγ0εk (292)

= δAB
n− 1

4
e−(n−1)rē

(f̄)m
A ē

(f̄)n
B f(n−1)mnε

†
kεk −

n− 1

4
e−(n−1)rē

(f̄)m
A ē

(f̄)n
0 f(n−1)mnε

†
kγ

Aγ0εk (293)

=
n− 1

4
e−(n−1)rηMN ē

(f̄)m
M ē

(f̄)n
N f(n−1)mnε

†
kεk +

n− 1

4
e−(n−1)rē

(f̄)m
0 ē

(f̄)n
0 f(n−1)mnε

†
kεk

+
n− 1

4
e−(n−1)rē

(f̄)m
A ē

(f̄)n
0 f(n−1)mnε

†
kγ

0γAεk (294)

=
n− 1

4
e−(n−1)rf̄mnf(n−1)mnε

†
kεk +

n− 1

4
e−(n−1)rē

(f̄)m
0 ē

(f̄)n
0 f(n−1)mnε

†
kεk

+
n− 1

4
e−(n−1)rē

(f̄)m
A ē

(f̄)n
0 f(n−1)mnε

†
kγ

0γAεk (295)

=
n− 1

4
e−(n−1)rf̄mnf(n−1)mnε

†
kεk +

n− 1

4
e−(n−1)rē

(f̄)m
M ē

(f̄)n
0 f(n−1)mnε̄kγ

Mεk. (296)
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The e−(n−1)r factor and εk = O(er/2) mean I only need everything else to O(1); anything higher
order will integrate to zero in equation 268.
∴ f̄mnf(n−1)mn → fmn(0) f(n−1)mn and hence by definition 3.18,

−1

2
(ω1MA − ω1MA)ε

†
kγ

AγMεk =
n− 1

4
e−(n−1)rpM ε̄kγ

Mεk +O(e−(n−1)r). (297)

Substituting back into equation 279 then gives

ε†kγ
1γADAεk →

n− 1

4
e−(n−1)rpM ε̄kγ

Mεk + iα(n− 2)ε†kγ
1εk. (298)

∴ DA(εk)
†γAγ1εk →

n− 1

4
e−(n−1)rpM ε̄kγ

Mεk + iα(n− 2)ε†kγ
1εk too. (299)

Substituting these two expressions into equation 269 implies

E01(εk) →
n− 1

2
e−(n−1)rpM ε̄kγ

Mεk + ε†kγ
1γAAAεk + ε†kA

†
Aγ

Aγ1εk. (300)

The lower order terms I’ve omitted integrate to zero under
∫
∂∞Σt

dA, so equation 268 becomes

lim
a→∞

Q(εa) =

∫
∂∞Σt

(
n− 1

2
e−(n−1)rpM ε̄kγ

Mεk + ε†kγ
1γAAAεk + ε†kA

†
Aγ

Aγ1εk

)
dA (301)

=
n− 1

2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x

+ e(n−2)r

∫
∂∞Σt

ε†k

(
γ1γAAA + A†

Aγ
Aγ1
)
εk

√
ι∗f(0)d

n−2x. (302)

It’s now time to evaluate the bulk expression for lima→∞Q(εa).
First note that by lemma 3.14,

Q(εk − χ) = 2

∫
Σt

(
∇I(εk − χ)†∇I(εk − χ)− (γI∇I(εk − χ))†γJ∇J(εk − χ)

+ (εk − χ)†M(εk − χ)
)
dV. (303)

Hence, by equation 86, definition 3.8, definition 3.5, lemma 3.9 and corollary 3.17.1,

1

2
(Q(ε)−Q(εa)) = ||Ψ||2H − ||ψa||2H − ||G(Ψ)||2L2 + ||G(ψa)||2L2 + ⟨G(Ψ− ψa), γ

I∇Iεk⟩L2

+ ⟨γI∇Iεk, G(Ψ− ψa)⟩L2 −
∫
Σt

(∇I(Ψ− ψa))
†∇I(εk)dV

−
∫
Σt

∇I(εk)
†∇I(Ψ− ψa)dV −

∫
Σt

(Ψ− ψa)
†Mεk dV

−
∫
Σt

ε†kM(Ψ− ψa) dV. (304)

Inner products are continuous. By lemma 3.9, so is G.
∴ I immediately get

lim
a→∞

||ψa||2H = ||Ψ||2H, lim
a→∞

||G(ψa)||2L2 = ||G(Ψ)||2L2 , lim
a→∞

⟨G(Ψ− ψa), γ
I∇Iεk⟩L2 = 0

and lim
a→∞

⟨γI∇Iεk, G(Ψ− ψa)⟩L2 = 0. (305)

∴ lim
a→∞

1

2
(Q(ε)−Q(εa)) = lim

a→∞

(
−
∫
Σt

(∇I(Ψ− ψa))
†∇I(εk)dV −

∫
Σt

∇I(εk)
†∇I(Ψ− ψa)dV

−
∫
Σt

(Ψ− ψa)
†Mεk dV −

∫
Σt

ε†kM(Ψ− ψa) dV

)
. (306)
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Since the inner product on H is ⟨ψ, χ⟩H =
∫
Σt

(
(∇Iψ)

†∇Iχ+ ψ†Mχ
)
dV (with limits of Cauchy

sequences taken appropriately when ψ or χ is in H\C∞
c ) and M is assumed to be non-negative

definite, ∫
Σt

(∇Iψ)
†∇I(ψ) dV ≤ ||ψ||2H <∞. (307)

∴ ∇Iψ ∈ L2 and ψ 7→ ∇Iψ is a continuous (i.e. bounded) linear operator.

∴ lim
a→∞

∫
Σt

(∇I(Ψ− ψa))
†∇I(εk)dV = lim

a→∞
⟨∇I(Ψ− ψa),∇Iεk⟩L2 (308)

=
〈
∇I

(
lim
a→∞

(Ψ− ψa)
)
,∇Iεk

〉
L2

(309)

= 0 (310)

and likewise for
∫
Σt

∇I(εk)
†∇I(Ψ− ψa)dV . That leaves

lim
a→∞

1

2
(Q(ε)−Q(εa)) = lim

a→∞

(
−
∫
Σt

(Ψ− ψa)
†Mεk dV −

∫
Σt

ε†kM(Ψ− ψa) dV

)
. (311)

Because I’m assuming M is non-negative definite, ||M||0 decays faster than O(e−(n−1)r) near
∂∞Σt and εk grows at O(er/2) near ∂∞Σt,∣∣∣∣ ∫

Σt

ε†kMεk dV

∣∣∣∣ = ∫
Σt

ε†kMεk dV ≤
∫
Σt

ε†kεk||M||0 dV <∞. (312)

∴ εk
√

||M||0 ∈ L2.

Likewise, (Ψ− ψa)
√
||M||0 ∈ L2 because∫

Σt

(Ψ− ψa)
†(Ψ− ψa)||M||0 dV ≤

∫
Σt

(Ψ− ψa)
†M(Ψ− ψa)dV ≤ ||Ψ− ψa||2H <∞. (313)

Hence, effectively by the Cauchy-Schwartz inequality applied pointwise and the continuity of
inner products,

lim
a→∞

∣∣∣∣ ∫
Σt

(Ψ− ψa)
†Mεk dV

∣∣∣∣ ≤ lim
a→∞

||(Ψ− ψa)
√

||M||0||L2||εk
√

||M||0||L2 (314)

=
∣∣∣∣∣∣ lim
a→∞

(Ψ− ψa)
√

||M||0
∣∣∣∣∣∣
L2
||εk
√

||M||0||L2 (315)

= 0. (316)

∴ lim
a→∞

∫
Σt

(Ψ− ψa)
†Mεk dV = 0 (317)

Analogously,
∫
Σt
ε†kM(Ψ− ψa) dV = 0 too.

The net result is that

lim
a→∞

Q(εa) = Q(ε) (318)

= 2

∫
Σt

(
(∇Iε)

†∇Iε− (γI∇Iε)
†γJ∇Jε+ ε†Mε

)
dV by lemma 3.14 (319)

= 2

∫
Σt

(
(∇Iε)

†∇Iε+ ε†Mε
)
dV by equation 265. (320)

Substituting this into equation 302 completes the proof. □
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Corollary 3.19.1.

e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x (321)

is a conserved quantity.

Proof. Choose Aµ = 0. Then, the result follows immediately from lemma 3.12. □

Corollary 3.19.2. If equality holds in theorem 3.19, then24 ∃ a non-zero spinor, ε, such that
∇Iε = 0.

The example Aµs I’ll be considering in the rest of this work are ones such that∇µε would be the
gravitino transformation in some theory of supergravity. Then, ∇µε = 0 is the Killing spinor
condition. The existence of a non-zero solution, ε, would imply (M, g) is a supersymmetric
solution, i.e. some level of rigid supersymmetry is preserved by the spacetime. Corollary 3.19.2
almost implies that only a supersymmetric solution can achieve equality in theorem 3.19.

4 Examples with Aµ = 0

Throughout this section, Aµ is set to zero.

Lemma 4.1. The assumptions of definition 3.1 are satisfied if the energy-momentum tensor,
Tab, satisfies the dominant energy condition and T 0µ decays faster than O(e−(n−1)r) near ∂∞Σt.

Proof. Since Aµ = 0 in this section, all the conditions about AI in definition 3.1 are trivially
satisfied (with Ãµ = 0 too).
Only the conditions about M remain.
Definition 3.1 implies M = 4πT 0µγ0γµ = 4π(T 00I + T 0Iγ0γI) when Aµ = 0.

The eigenvalues of T 0Iγ0γI are
25 ±

√
T 0IT 0

I , so M being non-negative definite is equivalent to

T 00 ≥
√
T 0IT 0

I .
The dominant energy condition says −T ab V b is future directed and causal for any future di-
rected, causal vector, V a.
Choose V µ = δµ0.
∴ −T µ0 = T 0µ is future directed and causal.
∴ T 00 ≥ 0 and 0 ≥ ηµνT

0µT 0ν ⇐⇒ (T 00)2 ≥ T 0IT 0
I , which is the condition found above for

M to be non-negative definite.
Finally, since the gamma matrices are O(1), the assumed condition on T 0µ’s decay is exactly
the condition in definition 3.1 about ||M||0’s decay. □

Corollary 4.1.1. Theorem 3.19 reduces to

Q(ε) =
n− 1

2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x (322)

= 2

∫
Σt

(
(∇Iε)

†∇Iε+ 4πT 0µε†γ0γµε
)
dV (323)

≥ 0 (324)

24Note that lemma 3.12 implies the equality hold ∀t if it holds for any one value of t.
25This can be seen by supposing T 0Iγ0γIv = λv. Then, λ2v = T 0IT 0

I v by the Clifford algebra. Both

±
√
T 0IT 0

I must be eigenvalues because if v is in one eigenspace, then γ0v is in the other eigenspace.
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The main task for the remainder of this section is to give physical meaning to the boundary
term, n−1

2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x, for different boundary geometries, f(0). In [28],
and to a lesser extent in [14], it’s effectively argued that the entirety of
n−1
2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x should be interpreted as an energy. This interpretation
is supported by the fact that εk being a background Killing spinor automatically makes
ε̄kγ

µεk a Killing vector for ḡ. However, as I’ll show, often a bit more can be said and
n−1
2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x can be concretely connected to the energy I defined in
section 2.

4.1 Toroidal boundary

Although asymptotically AdS spacetimes are more familiar, εk takes a simpler form in the case
of the toroidal boundary, i.e. R× Tn−2 with the metric,

f(0) = −dt⊗ dt+ δαβ dθ
α ⊗ dθβ = ηmndx

m ⊗ dxn. (325)

Hence, I will present applications in this class first. This choice of boundary metric is motivated
by the Kottler metrics,

g = −(k +R2)dt⊗ dt+
dR⊗ dR

k +R2
+R2g(k), (326)

where k = 1, 0,−1, g(1) is the metric on the unit (n − 2)−sphere, g(0) is the metric on a
unit (n− 2)−torus and g(−1) is the metric on a compact identification of (n− 2)−dimensional
hyperbolic space, Hn−2. The Kottler metrics are the simplest generalisation of AdS (the k = 1
case is AdS itself) and in Fefferman-Graham coordinates, they are [32]

g = dr ⊗ dr + e2r

(
−
(
1 +

k

4
e−2r

)2

dt⊗ dt+

(
1− k

4
e−2r

)2

g(k)

)
. (327)

Hence, this subsection studies the k = 0 case. k = 1, i.e. AdS, will be studied in section
4.2. No immediate progress can be made in the k = −1 case because compactifying Hn−2 by
identification is incompatible with retaining any of Hn−2’s Killing spinors. Indeed, negative
energy solutions are possible in spacetimes with compact hyperbolic cross-sections [42], albeit
it isn’t known whether the energy is unbounded below.

Lemma 4.2. The most general Killing spinor for the f(0) in equation 325 is

εk = er/2P−
1 ε0, (328)

where P±
1 = 1

2
(I ± iγ1) and ε0 is an arbitrary constant spinor.

Proof. As discussed above, the background metric is

ḡ = dr ⊗ dr + e2rηmndx
m ⊗ dxn. (329)

∴ The natural vielbein is e0 = erdt, e1 = dr and eA = erδAαdθ
α.

To solve the Killing spinor equation, I need to first find the spin connection coefficients. I’ll do
so by the structure equation, deµ = −ωµν ∧ eν .

de0 = erdr ∧ dt = e1 ∧ e0, de1 = 0 and deA = erδAαdr ∧ dθα = e1 ∧ eA. (330)
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Hence, by inspection, the non-zero connection 1-forms are (up to antisymmetries) are

ω01 = −e0 and ωA1 = eA (331)

⇐⇒ ω010 = −1 and ωA1A = 1 (no sum). (332)

The background Killing spinor equation - equation 226 - says

0 = ∂µ′εk −
1

4
e µ
µ′ ωνρµγ

νρεk +
i

2
e µ
µ′ γµεk (333)

and it now reduces to

0 = ∂tεk +
er

2
γ0γ1εk −

ier

2
γ0εk, (334)

0 = ∂rεk +
i

2
γ1εk and (335)

0 = ∂αεk −
er

2
δAαγ

Aγ1εk +
ier

2
δAαγ

Aεk. (336)

Equation 335 immediately implies εk = e−iγ1r/2ε̃, for some spinor, ε̃, that doesn’t depend on r.
Split ε̃ up into γ1 eigenspaces, i.e. ε̃ = P−

1 ε− +P+
1 ε+ for some ε± that also don’t depend on r.

∴ εk = er/2P−
1 ε− + e−r/2P+

1 ε+.
Substituting this into equation 336 implies

0 = er/2∂αP
−
1 ε− + e−r/2∂αP

+
1 ε+ − ie3r/2

2
δAαγ

AP−
1 ε− +

ier/2

2
δAαγ

AP+
1 ε+

+
ie3r/2

2
δAαγ

AP−
1 ε− +

ier/2

2
δAαγ

AP+
1 ε+ (337)

= er/2∂αP
−
1 ε− + e−r/2∂αP

+
1 ε+ + ier/2δAαγ

AP+
1 ε+ (338)

= er/2P−
1 (∂αε− + iδAαγ

Aε+) + e−r/2P+
1 ∂αε+. (339)

Applying P±
1 to this equation yields ∂αP

+
1 ε+ = 0 and ∂αP

−
1 ε− = −iδAαγ

AP+
1 ε+.

The first of these equations implies P+
1 ε+ is independent of θα. Consequently, the 2nd equation

integrates to P−
1 ε− = −iθαδAαγ

AP+
1 ε+ + P−

1 ε0, for some ε0 independent of r and θα.
θα is an angle around a circle though; it is periodic. Spinors must be periodic or antiperiodic
around a circle. −iθαδAαγ

AP+
1 ε+ is neither unless P+

1 ε+ = 0.
∴ I’m left with εk = er/2P−

1 ε0, where ε0 can only depend on t.
It remains to satisfy equation 334, which now says

0 = er/2P−
1 ∂tε0 +

ie3r/2

2
γ0P−

1 ε0 −
ie3r/2

2
γ0P−

1 ε0 = er/2P−
1 ∂tε0. (340)

Hence, I’m left with εk = er/2P−
1 ε0 for just a constant spinor, ε0. □

Corollary 4.2.1. Theorem 3.19 only applies if (M, g) admits a spin structure where spinors
are periodic in the torus’ circle directions in an open neighbourhood of ∂∞Σt, say M .

A circle admits two spin structures - one where spinors are periodic and one where spinors
are anti-periodic. In Tn−2, this applies to each of the n− 2 circles. Of all these different spin
structures, equation 328 requires the one which is periodic in all n − 2 circles. However, it’s
possible that spin structure, while fine on (M, ḡ), does not extend to all of (M, g). Theorem
3.19 would therefore not apply in such a scenario. Indeed this is exactly the situation for the
AdS soliton [40, 41] - see [43] for yet more exotic constructions. To make progress, I must
henceforth restrict attention - just as the authors of [13] did - to manifolds where the spin
structure required by equation 328 does extend to all of (M, g).
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Theorem 4.3 (Toroidal positve energy theorem). If the Einstein equation holds, Tab satisfies
the dominant energy condition, T 0µ decays faster than O(e−(n−1)r) near ∂∞Σt and (M, g)’s spin
structure is compatible with having periodic spinors near ∂∞Σt, then

E ≥
√

JAJA, (341)

where JA = n−1
16π

∫
∂∞Σt

pAd
n−2θ.

Proof. The proof is simply a matter of evaluating corollary 4.1.1 for the εk in equation 328.
In particular,

√
ι⋆f(0) = 1 and

pM ε̄kγ
Mεk = pMε

†
kγ

0γMεk (342)

= ε†k(p0I + pAγ
0γA)εk (343)

= erε†0P
−
1 (p0I + pAγ

0γA)P−
1 ε0. (344)

The spinors and matrices in this equation are all constants, so can be freely moved in and out
of integrals. Thus, corollary 4.1.1 says

0 ≤ Q(ε) (345)

= ε†0P
−
1

(
n− 1

2

∫
∂∞Σt

p0d
n−2θ I +

n− 1

2

∫
∂∞Σt

pAd
n−2θγ0γA

)
P−
1 ε0 (346)

= 8πε†0P
−
1

(
EI + JAγ0γA

)
P−
1 ε0 by equation 81. (347)

The eigenvalues of the matrix, JAγ0γA, are26 ±
√
JAJA, so EI + JAγ0γA has eigenvalues,

E ±
√
JAJA.

Choose ε0 to be in intersection of E−
√

JAJA eigenspace with the interection of the i eigenspace

of γ1 (so that P−
1 ε0 = ε0). Then, equation 347 can only hold if E ≥

√
JAJA. □

The quantity, n−1
16π

∫
∂∞Σt

pAd
n−2θ, has been suggestively denoted JA, hinting angular momen-

tum. Indeed, a quantity analogous to JA has been interpreted as an angular momentum vector
in [13]. It is natural to make the same interpretation here because the boundary topology is
R × Tn−2; each component of JA describes the rotation around one of the n − 2 circles com-
prising Tn−2. However, note that angular momentum will look quite different in section 4.2
because of the different boundary topology there.

4.2 Asymptotically AdS

In this subsection, I’ll apply theorem 3.19 to the example of greatest physical interest, namely
Aµ = 0 and f(0) = −dt⊗ dt+ gSn−2 . By definition 2.3, this corresponds to asymptotically AdS
spacetimes; the background metric is

ḡ = gAdS = dr ⊗ dr + e2r

(
−
(
1 +

1

4
e−2r

)2

dt⊗ dt+

(
1− 1

4
e−2r

)2

gSn−2

)
(348)

The open neighbourhood of the “boundary” at infinity has only one spin structure now, so,
unlike the toroidal case, the issues about compatibility raised in corollary 4.2.1 do not arise.

26The eigenvalues can be found by noting that if JAγ0γAv = λv, then λ2v = JAJBγ0γAγ0γBv = JAJAv by
the Clifford algebra. Both λ =

√
JAJA and λ = −

√
JAJA must occur because if v is in one eigenspace, then

γ0v is in the other eigenspace.
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In Fefferman-Graham coordinates, AdS is given by equation 9. The Killing spinor - in the
natural vielbien associated to those coordinates - is calculated in [14]. However, the Fefferman-
Graham coordinates - especially when gSn−2 is written in the nested sines form of [14] - are very
asymmetrical. The ε̄kγ

Mεk in theorem 3.19 will be practically impossible to calculate in this
frame. Luckily for me, ε̄kγ

µεk is a Lorentz vector. Hence, I can choose a more convenient frame,
e′µ = Λνµ(x)eν , calculate the Killing spinor, ε′k, in the e′µ frame and then determine ε̄kγ

µεk by
ε̄kγ

µεk = Λµν(x)ε̄
′
kγ

νε′k. The most convenient e′µ results from viewing AdS as R × Hn−1 with
the metric,

gAdS = −
(
1 + ρ2

1− ρ2

)2

dt⊗ dt+
4

(1− ρ2)2
δIJdx

I ⊗ dxJ , (349)

where ρ =
√
xIxI and xI are Cartesian coordinates27 in the unit disk (centred at the origin).

Hn−1 is thus being represented by the Poincaré disk/ball in these coordinates.

Lemma 4.4. The area radius function, R, is R = 2ρ
1−ρ2 and the Fefferman-Graham coordinate

is r = ln
(
R +

√
1 +R2

)
− ln(2).

Proof. Writing the δIJdx
I ⊗ dxJ in equation 349 in spherical coordinates,

gAdS = −
(
1 + ρ2

1− ρ2

)2

dt⊗ dt+
4

(1− ρ2)2
dρ⊗ dρ+

4ρ2

(1− ρ2)2
gSn−2 . (350)

By inspection, the area-radius function is R = 2ρ
1−ρ2 .

In terms of R, gAdS takes the standard form,

gAdS = −(1 +R2)dt⊗ dt+
dR⊗ dR

1 +R2
+R2gSn−2 , because (351)

1 +R2 = 1 +
4ρ2

(1− ρ2)2
=

(
1 + ρ2

1− ρ2

)2

and (352)

dR⊗ dR

1 +R2
=

(
1− ρ2

1 + ρ2

)2(
2(1− ρ2)− 2ρ(−2ρ)

(1− ρ2)2

)2

dρ⊗ dρ =
4dρ⊗ dρ

(1− ρ2)2
. (353)

The natural way to find the Fefferman-Graham coordinate is thus to choose r to depend only
on R and fix it so that dr ⊗ dr = dR⊗dR

1+R2 .

∴
dr

dR
= ± 1√

1 +R2
. (354)

The RHS can be integrated (e.g. by computer algebra software) to get

r = ± ln
(
R +

√
1 +R2

)
+ c. (355)

I need the boundary at infinity to be r → ∞, so I must choose the + in ±.
The choice of c = − ln(2) is just to ensure the dt⊗dt in f(0) has coefficient −1; for other choices
it would be −2ec. □

Corollary 4.4.1. The boundary at infinity, r → ∞, corresponds to ρ→ 1−.

27In particular, the I in xI is not a vielbein index. However, I will still lower that index by δIJ , just as if it
were a vielbein index.
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In the coordinates of equation 349, the natural choice of vielbein is

e′0 =
1− ρ2

1 + ρ2
∂t and e′I =

1− ρ2

2
∂I . (356)

Meanwhile the coordinates of equation 348 are naturally viewed in vielbein,

e0 =
e−r

1 + 1
4
e−2r

∂t, e1 = ∂r and eA =
e−r

1− 1
4
e−2r

e
(s)α
A ∂α (357)

where e
(s)A
α is a vielbein for gSn−2 and θα are local coordinates for Sn−2.

Lemma 4.5. The vielbeins, eµ and e′µ, are related by

e′0 = e0, and e′I = x̂Ie1 + ρ
∂θα

∂xI
e(s)Aα eA, (358)

where x̂I are unit vectors, i.e. xI = ρx̂I . Hence, the local Lorentz transformation relating eµ
and e′µ, i.e. e

′
µ = Λνµ(x)eν, is given by

Λµ0 = δµ0 and ΛµI = δµ1x̂I + δµAρ
∂θα

∂xI
e(s)Aα . (359)

Proof. The proof is essentially just applying lemma 4.4.
e′0 = e0 immediately because all I’m doing is re-writing r in terms of ρ. For e′I ,

e′I =
1− ρ2

2
∂I (360)

=
1− ρ2

2

∂r

∂xI
∂r +

1− ρ2

2

∂θα

∂xI
∂α (361)

=
1− ρ2

2

∂r

∂xI
e1 +

1− ρ2

2

∂θα

∂xI
e(s)Aα e

(s)
A (362)

=
1− ρ2

2

∂r

∂xI
e1 +

1− ρ2

2

∂θα

∂xI
e(s)Aα ReA. (363)

For the 2nd term,

1− ρ2

2
R =

1− ρ2

2

2ρ

1− ρ2
= ρ. (364)

Meanwhile, for the 1st term,

1− ρ2

2

∂r

∂xI
=

1− ρ2

2

∂

∂xI

(
ln
(
R +

√
1 +R2

)
− ln(2)

)
(365)

=
1− ρ2

2

1

R +
√
1 +R2

(
1 +

R√
1 +R2

)
∂R

∂xI
(366)

=
1− ρ2

2

1√
1 +R2

∂

∂xI

(
2ρ

1− ρ2

)
(367)

=
1− ρ2

2

1√
1 + 4ρ2

(1−ρ2)2

2(1− ρ2)− 2ρ(−2ρ)

(1− ρ2)2
∂ρ

∂xI
(368)

=
1− ρ2

2

1− ρ2

1 + ρ2
2(1 + ρ2)

(1− ρ2)2
xI

ρ
(369)

= x̂I . (370)

Substituting these expressions back into equation 363 gives the claimed result. □
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Lemma 4.6. In the frame of equation 356,

ε′k =
1√

1− ρ2

(
I − ixIγ

I
)
eiγ

0t/2ε0 (371)

is a background Killing spinor, for any constant spinor, ε0.

Proof. To check whether equation 226 holds, I first need to find the spin connection coefficients.

de0 = d

(
1 + ρ2

1− ρ2
dt

)
(372)

=
2ρ(1− ρ2)− (1 + ρ2)(−2ρ)

(1− ρ2)2
dρ ∧ dt (373)

=
4

(1− ρ2)2
xIdx

I ∧ dt (374)

=
2

1 + ρ2
xIe

I ∧ e0. (375)

deI = d

(
2

1− ρ2
dxI
)

=
4ρ

(1− ρ2)2
dρ ∧ dxI (376)

=
4ρ

(1− ρ2)2
xJ
ρ

1− ρ2

2
eJ ∧ 1− ρ2

2
eI (377)

= xJe
J ∧ eI . (378)

ωµν ∧ eν = −deµ by the structure equations, so28 ω0I = − 2
1+ρ2

xIe
0 and ωIJ = xJe

I − xIe
J .

∴ ω0I0 = − 2
1+ρ2

xI and ωIJI = xJ for J ̸= I and no sum on I.
Equation 226, for background Killing spinors, is

0 = e µ′

µ ∂µ′εk −
1

4
ωνρµγ

νρεk +
i

2
γµεk. (379)

First try µ = 0. Then,

e µ′

µ ∂µ′εk −
1

4
ωνρµγ

νρεk +
i

2
γµεk (380)

=
1− ρ2

1 + ρ2
∂tεk +

1

1 + ρ2
xIγ

0γIεk −
i

2
γ0εk (381)

=
1− ρ2

1 + ρ2
1√

1− ρ2

(
I − ixIγ

I
) i

2
γ0eiγ

0t/2ε0 +
1

1 + ρ2
xJγ

0γJ
1√

1− ρ2

(
I − ixIγ

I
)
eiγ

0t/2ε0

− i

2
γ0

1√
1− ρ2

(
I − ixIγ

I
)
eiγ

0t/2ε0 (382)

=
1

2(1 + ρ2)
√

1− ρ2

(
i(1− ρ2)γ0 − (1− ρ2)xIγ

0γI + 2xIγ
0γI − 2ixJxIγ

0γJγI

− i(1 + ρ2)γ0 − (1 + ρ2)xIγ
0γI
)
eiγ

0t/2ε0 (383)

=
1

2(1 + ρ2)
√

1− ρ2

(
i(1− ρ2)γ0 − (1− ρ2)xIγ

0γI + 2xIγ
0γI + 2iρ2γ0

− i(1 + ρ2)γ0 − (1 + ρ2)xIγ
0γI
)
eiγ

0t/2ε0 (384)

= 0, as required. (385)

28As indices are raised and lowered by δ, the matching of upstairs and downstairs index position need not be
too strict. I also won’t list zero components or those determined by antisymmetries.
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Next, consider µ = I. The derivative term is

∂Iεk = ∂I

(
1√

1− ρ2

(
I − ixJγ

J
)
eiγ

0t/2ε0

)
(386)

=

(
− 1

2(1− ρ2)3/2
(−2ρ)

xI
ρ
(I − ixJγ

J)− i√
1− ρ2

γI

)
eiγ

0t/2ε0 (387)

=
1

(1− ρ2)3/2

(
xII − ixIxJγ

J − i(1− ρ2)γI
)
eiγ

0t/2ε0. (388)

Then, the actual expression to be checked is

e µ′

µ ∂µ′εk −
1

4
ωνρµγ

νρεk +
i

2
γµεk (389)

=
1− ρ2

2

1

(1− ρ2)3/2

(
xII − ixIxJγ

J − i(1− ρ2)γI
)
eiγ

0t/2ε0

− 1

2
xJγ

IJ 1√
1− ρ2

(
I − ixKγ

K
)
eiγ

0t/2ε0 +
i

2
γI

1√
1− ρ2

(
I − ixJγ

J
)
eiγ

0t/2ε0 (390)

=
1

2
√

1− ρ2

(
xII − ixIxJγ

J − i(1− ρ2)γI − xJγ
IJ + ixJxKγ

IJγK

+ iγI + xJγ
IγJ
)
eiγ

0t/2ε0 (391)

=
1

2
√

1− ρ2

(
xII − ixIxJγ

J + iρ2γI − xJ(γ
IγJ + δIJI)

+ ixJxK
(
γIJK − δKJγI + δKIγJ

)
+ xJγ

IγJ
)
eiγ

0t/2ε0 (392)

= 0 too. (393)

Hence, the postulated ε′k is indeed a background Killing spinor in the frame of equation 356. □

Definition 4.7 (Momentum, momentum, momentum!). Define the linear momentum, angular
momentum and centre of mass momentum as

PI =
n− 1

16π

∫
∂∞Σt

f̃mn(0) f(n−1)mnx̂Id(gSn−2) =
n− 1

16π

∫
∂∞Σt

p0x̂Id(gSn−2), (394)

JIJ =
n− 1

16π

∫
∂∞Σt

f(n−1)0α

(
x̂I
∂θα

∂xJ

∣∣∣∣
ρ=1

− x̂J
∂θα

∂xI

∣∣∣∣
ρ=1

)
d(gSn−2) and (395)

KI =
n− 1

16π

∫
∂∞Σt

f(n−1)0α
∂θα

∂xJ

∣∣∣∣
ρ=1

(
δJI − x̂J x̂I

)
d(gSn−2) (396)

respectively. In these expressions, θα denote local coordinates on Sn−2, x̂I denote unit vector
Cartesian coordinates and ρ =

√
xIxI , i.e. x

I = ρx̂I .

These definitions are based off the discussion in [13]. The exact form is motivated by the terms
that appear in the next theorem. However, some heuristics can be discussed now. It was shown
in [10] that the Riemannian analogue of (E,PI) transforms as a Lorentz vector when one chooses
a different conformal class representative for the boundary metric, f(0). Hence, PI naturally
behaves like linear momentum. Next, observe that the vector, (x̂I

∂θα

∂xJ
|ρ=1− x̂J ∂θ

α

∂xA
|ρ=1)∂α equals

x̂I∂J− x̂J∂I , which is the generator of rotations. Hence, it’s natural to expect what I’ve defined
as JIJ above to behave like angular momentum. I will do an example illustrating this in section
4.2.1. Likewise, ∂θα

∂xJ
|ρ=1

(
δJI − x̂J x̂I

)
∂α =

(
δJI − x̂J x̂I

)
∂J can be seen a generator of boosts,

suggesting the KI above should be interpreted as a centre of mass momentum.
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Theorem 4.8 (Asymptotically AdS positive energy theorem). If the Einstein equation holds,
Tab satisfies the dominant energy condition and T 0µ decays faster than O(e−(n−1)r) near ∂∞Σt,
then

EI − iPIγ
I +

i

2
JIJγ

0γIJ +KIγ
0γI (397)

is a non-negative definite matrix.

Proof. The proof is mostly a matter of evaluating corollary 4.1.1 for asymptotically AdS spaces.
As explained at the start of section 4.2, I’ll find ε̄′kγ

µε′k and use that to find pM ε̄kγ
Mεk.

When µ = 0,

ε̄′kγ
0ε′k = ε′†k ε

′
k (398)

=
1

1− ρ2
ε†0e

−iγ0t/2(I − ixIγ
I)(I − ixJγ

J)eiγ
0t/2ε0 by lemma 4.6 (399)

=
1

1− ρ2
ε†0e

−iγ0t/2(I − 2ixIγ
I − xIxJγ

IγJ)eiγ
0t/2ε0 (400)

=
1

1− ρ2
ε†0e

−iγ0t/2((1 + ρ2)I − 2ixIγ
I)eiγ

0t/2ε0. (401)

I only need this expression near ∂∞Σt, where r → ∞. By lemma 4.4, that means ρ → 1 and
1

1−ρ2 = R
2ρ

→ 1
2
er.

∴ ε̄′kγ
0ε′k → erε†0e

−iγ0t/2(I − ix̂Iγ
I)eiγ

0t/2ε0. (402)

Hence, using lemma 4.5,

n− 1

2
e−r
∫
∂∞Σt

p0ε̄kγ
0εk

√
ι∗f(0)d

n−2x

=
n− 1

2
e−r
∫
∂∞Σt

p0Λ
0
µε̄

′
kγ

µε′k

√
ι∗f(0)d

n−2x (403)

=
n− 1

2
e−r
∫
∂∞Σt

p0ε̄
′
kγ

0ε′k

√
ι∗f(0)d

n−2x (404)

=
n− 1

2

∫
∂∞Σt

p0ε
†
0e

−iγ0t/2(I − ix̂Iγ
I)eiγ

0t/2ε0

√
ι∗f(0)d

n−2x (405)

= ε†0e
−iγ0t/2n− 1

2

(∫
∂∞Σt

p0

√
ι∗f(0)d

n−2x− i

∫
∂∞Σt

p0x̂I

√
ι∗f(0)d

n−2xγI
)
eiγ

0t/2ε0 (406)

= 8πε†0e
−iγ0t/2(EI − iPIγ

I)eiγ
0t/2ε0 by definition 4.7. (407)

Likewise, when µ = I,

ε̄′kγ
Iε′k = ε′†k γ

0γIε′k (408)

=
1

1− ρ2
ε†0e

−iγ0t/2(I − ixJγ
J)γ0γI(I − ixKγ

K)eiγ
0t/2ε0 (409)

=
1

1− ρ2
ε†0e

−iγ0t/2(γ0 − ixJγ
Jγ0)(γI − ixKγ

IγK)eiγ
0t/2ε0 (410)

=
1

1− ρ2
ε†0e

−iγ0t/2(γ0γI − ixJγ
Jγ0γI − ixJγ

0γIγJ − xJxKγ
Jγ0γIγK)eiγ

0t/2ε0 (411)

=
1

1− ρ2
ε†0e

−iγ0t/2(γ0γI − 2ixJγ
0γIJ − 2xIxJγ

0γJ + ρ2γ0γI)eiγ
0t/2ε0 (412)

=
1

1− ρ2
ε†0e

−iγ0t/2((1 + ρ2)γ0γI − 2ixJγ
0γIJ − 2xIxJγ

0γJ)eiγ
0t/2ε0 (413)

→ erε†0e
−iγ0t/2(γ0γI − ix̂Jγ

0γIJ − x̂I x̂Jγ
0γJ)eiγ

0t/2ε0. (414)
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For the integral, note that pA = e
(f(0))m

A nn(0)f(n−1)mn. With the choice of f(0) here, n
n
(0) = δn0

and e
(f(0))m

A = e
(s)α
A δmα, meaning pA = e

(s)α
A f(n−1)α0. Hence, using lemma 4.5 again,

n− 1

2
e−r
∫
∂∞Σt

pAε̄kγ
Aεk

√
ι∗f(0)d

n−2x

=
n− 1

2
e−r
∫
∂∞Σt

pAΛ
A
µε̄

′
kγ

µε′k

√
ι∗f(0)d

n−2x (415)

=
n− 1

2
e−r
∫
∂∞Σt

e
(s)α
A f(n−1)0α

∂θβ

∂xI

∣∣∣∣
ρ=1

e
(s)A
β ε̄′kγ

Iε′k

√
ι∗f(0)d

n−2x (416)

=
n− 1

2

∫
∂∞Σt

f(n−1)0α
∂θα

∂xI

∣∣∣∣
ρ=1

× ε†0e
−iγ0t/2(γ0γI − ix̂Jγ

0γIJ − x̂I x̂Jγ
0γJ)eiγ

0t/2ε0

√
ι∗f(0)d

n−2x (417)

=
n− 1

2
ε†0e

−iγ0t/2

(∫
∂∞Σt

f(n−1)0α
∂θα

∂xI

∣∣∣∣
ρ=1

(δIJ − x̂I x̂J)
√
ι∗f(0)d

n−2xγ0γJ

− i

∫
∂∞Σt

f(n−1)0α
∂θα

∂xI

∣∣∣∣
ρ=1

x̂J

√
ι∗f(0)d

n−2xγ0γIJ
)
eiγ

0t/2ε0 (418)

= 8πε†0e
−iγ0t/2

(
KIγ

0γI +
i

2
JIJγ

0γIJ
)
eiγ

0t/2ε0 by definition 4.7. (419)

The upshot of these calculations is that corollary 4.1.1 now says

0 ≤ Q(ε) = 8πε†0e
−iγ0t/2

(
EI − iPIγ

I +KIγ
0γI +

i

2
JIJγ

0γIJ
)
eiγ

0t/2ε0. (420)

By lemma 3.12, Q(ε) is conserved. Since ε0 is an arbitrary constant spinor, it must then be
that e−iγ0t/2(EI − iPIγ

I +KIγ
0γI + i

2
JIJγ

0γIJ)eiγ
0t/2 is t-independent too.

The e−iγ0t/2 and eiγ
0t/2 book-ending this expression are merely performing a unitary change of

basis; they don’t affect the eigenvalues of the hermitian matrix,
EI − iPIγ

I +KIγ
0γI + i

2
JIJγ

0γIJ .
∴ Since ε0 is arbitrary and Q(ε) ≥ 0, it must be that EI − iPIγ

I + KIγ
0γI + i

2
JIJγ

0γIJ is
non-negative definite. □

Corollary 4.8.1. The energy is not unbounded below as a function of the other physical quan-
tities. In particular, E ≥ max(eigenvalues(iPIγ

I − i
2
JIJγ

0γIJ −KIγ
0γI)).

Understanding the general case where E = max(eigenvalues(iPIγ
I− i

2
JIJγ

0γIJ−KIγ
0γI)) may

be quite complicated - e.g. see [44] and references therein for the analogous problem in asymp-
totically flat spacetimes. However, the following special case - analysed for asymptotically flat
spacetimes in [35] - is much more straightforward.

Corollary 4.8.2. The only solution where E, PI , JIJ and KI all vanish is AdS.

Proof. Just as in the more general corollary 3.19.2, E, PI , JIJ and KI all vanishing implies
∇Iε = 0. Furthermore, With the present assumptions, ∇Iε is not just zero for some ε, but for
the ε that results from any choice of ε0 in εk.
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First, ∇Iε = 0 implies the ’integrability condition,’

0 = [∇I ,∇J ]ε (421)

= [DI + iαγI , DJ + iαγJ ]ε (422)

= [DI , DJ ]ε+ iαγJDIε− iαγIDJε+ iαγI∇Jε− iαγJ∇Iε (423)

= −1

4
RµνIJγ

µνε+ iαγJ(−iαγIε)− iαγI(−iαγJε) + 0− 0 (424)

= −1

4
RµνIJγ

µνε− 2α2γIJε (425)

= −1

4
(RµνIJ + 2ηµIηνJ)γ

µνε. (426)

Since ε0 can be chosen arbitrarily, equation 426 holds for a basis of spinors near ∂∞Σt.
Suppose {εa}ka=0 is a set of spinors solving ∇Iεa = 0 and linearly independent near ∂∞Σt. Let
{ca}ka=0 be constants in C and let ψ = caεa.
Suppose, for a contradiction, that the ca are non-zero, but ∃ a point, p, where ψ = 0.
εa’s linear independence near ∂∞Σt =⇒ ψ ̸= 0 near ∂∞Σt. Furthermore, by construction,
∇Iψ = 0 everywhere.
Now, I can repeat the same argument I used between equations 91 and 100 - with x0 = p and
x1 being some point, q, near (but not on) ∂∞Σt - to conclude that ψ = 0 at q.
This contradicts ψ ̸= 0 near ∂∞Σt.
Hence, all the ca must be zero to get ψ = 0 somewhere.
∴ Linear independence near ∂∞Σt extends to linear independence on all of Σt.
∴ At any given point, ε could take an arbitrary value in equation 426.
∴ (RµνIJ + 2ηµIηνJ)γ

µν = 0.
Since {γµν} are also linearly independent, it must be that RµνIJ = −(ηµIηνJ − ηµJηνI).
It remains to be seen what happens for Rµν0I .
RJK0I = R0IJK = −(η0JηIK − η0KηIJ) = 0.
That leaves R0J0I = −R00IJ −R0IJ0 = R0I0J .
Since a basis of ε is allowed, theorem 4.8 also implies T 0µγ0γµ = 0. But, the eigenvalues of

T 0µγ0γµ = 0 are T 00 ±
√
T 0IT 0

I , so it must be that T 00 and T 0I are both zero, i.e. T µ0 = 0.
By the dominant energy condition, −T µν V ν is future directed and causal whenever V µ is future
directed and causal.
Choose V µ = δµ0 + δµI for some value of I.
∴ −T µν V ν = −T µ0 − T µI = 0− δµJT JI .
However, this can only be causal if T IJ = 0.
∴ Ultimately, Tab = 0.
∴ Rµν =

2
n−2

Ληµν = −(n− 1)ηµν .

∴ −(n−1)δIJ = Rµ
IµJ = −R0I0J+R

K
IKJ = −R0I0J−(δKKδIJ−δKJ δKI) = −R0I0J−(n−2)δIJ .

∴ R0I0J = δIJ .
∴ Putting all the components together, Rµνρσ = −(ηµρηνσ − ηµσηνρ).
From [45], the only spacetime with Rµνρσ = −(ηµρηνσ− ηµσηνρ) and the chosen f(0) is AdS. □

In general, the eigenvalues of EI − iPIγ
I + i

2
JIJγ

0γIJ +KIγ
0γI cannot be found analytically.

However, progress can be made in specific cases. For example, if one assumes JIJ and KI are
zero - as is effectively done in [20, 4], then the eigenvalues are E ±

√
PIP I , meaning one must

have E ≥
√
PIP I . There are further examples in specfic dimensions. For example, if n = 4

and PI = 0, then one finds E ≥
√

1
2
JIJJ IJ +KIKI + JIKJ K

J KIKJ . See [13] for many other

permutations.
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4.2.1 5D, equal angular momenta Myers-Perry solution example

The examples so far are still very abstract. It’s best to calculate the various physical quantities
for a concrete metric and illustrate the implications of theorem 3.19. A sufficiently simple, but
non-trivial, example is the 5D, equal angular momenta Myers-Perry solution29 (with cosmo-
logical constant). Following [46], this solution can be expressed as

g = −S2dt⊗ dt+ f 2dR⊗ dR +
1

4
h2(dψ + cos(θ)dϕ− Ωdt)⊗ (dψ + cos(θ)dϕ− Ωdt)

+
1

4
R2(dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ), (427)

where
1

f 2
= 1 +R2 − 2MZ

R2
+

2Ma2

R4
, h2 = R2

(
1 +

2Ma2

R4

)
, Ω =

4Ma

R2h2
,

Z = 1− a2, S =
R

fh
and M and a are constants. (428)

In these coordinates, t is a “time coordinate” taking values in R and the remaining coordinates
would parameterise R4 as 

x1
x2
x3
x4

 =


R cos(θ/2) cos((ψ + ϕ)/2)
R cos(θ/2) sin((ψ + ϕ)/2)
R sin(θ/2) cos((ψ − ϕ)/2)
R sin(θ/2) sin((ψ − ϕ)/2)

 . (429)

This parameterisation implies R ∈ (R0,∞), where R0 is the radius of the event horizon,
θ ∈ [0, π] and (ψ, ϕ) takes values in R2 such that (ψ, ϕ) lies within the square with vertices,
(0, 0), (4π, 0), (2π,−2π) and (2π, 2π). Furthermore, in these coordinates, the AdS metric is

gAdS = −(1 +R2)dt⊗ dt+
dR⊗ dR

1 +R2

+
1

4
R2
(
(dψ + cos(θ)dϕ)⊗ (dψ + cos(θ)dϕ) + dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ

)
. (430)

For my purposes, it will be more convenient to swap (ψ, ϕ) for (ϕ1, ϕ2), where

ϕ1 =
1

2
(ψ + ϕ) and ϕ2 =

1

2
(ψ − ϕ). (431)

Then, ϕ1 ∈ [0, 2π], ϕ2 ∈ [0, 2π], 
x1
x2
x3
x4

 =


R cos(θ/2) cos(ϕ1)
R cos(θ/2) sin(ϕ1)
R sin(θ/2) cos(ϕ2)
R sin(θ/2) sin(ϕ2)

 (432)

and dψ + cos(θ)dϕ = (1 + cos(θ))dϕ1 + (1− cos(θ))dϕ2. (433)

The first step in exemplifying the results in sections 2 and 3 is writing equation 427 in Fefferman-
Graham form for an asymptotically AdS space30. Since the f 2dR⊗dR in equation 427 depends

29This is a black hole solution, contrary to the assumption I made at the start of section 3.1. However, as
mentioned then, the arguments can be adapted - as per [4] - to include (marginally) outer trapped surfaces.
Hence, the Myers-Perry metrics are admissible for exemplar purposes.

30Note that being able to do so is proof the metric is indeed asymptotically AdS.
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only on R and R → ∞ heuristically looks like the asymptotic end, it is natural to try r ≡ r(R)
as the Fefferman-Graham coordinate.

∴ dr ⊗ dr = f 2dR⊗ dR ⇐⇒ dr

dR
= ±f. (434)

∴ r = ±
∫

1√
1 +R2 − 2MZ

R2 + 2Ma2

R4

dR. (435)

This integral cannot be done explicitly. However, it only needs to be done perturbatively to
generate a Fefferman-Graham expansion. For AdS, the square root in the expression above
would have just 1 +R2, so it makes sense to perturb around that.
Therefore, to leading order in perturbation (it will become apparent this is the extent of the
necessary perturbation),

r = ±
∫

1√
1 +R2

1√
1− 2MZ

R2(1+R2)
+ 2Ma2

R4(1+R2)

dR (436)

→ ±
∫

1√
1 +R2

(
1 +

MZ

R2(1 +R2)
− Ma2

R4(1 +R2)

)
dR (437)

→ ±
∫ (

1√
1 +R2

+
MZ

R5

)
dR (438)

= ±
(
ln
(
R +

√
1 +R2

)
− MZ

4R4

)
+ C. (439)

To get r → ∞ as R → ∞, I should choose the + in ±.

∴ er → C(R +
√
1 +R2)e−MZ/4R4

(440)

→ C(R +
√
1 +R2)

(
1− MZ

4R4

)
. (441)

To match the AdS solution asymptotically, where M = 0, I should choose C = 1
2
.

∴ er → 1

2
(R +

√
1 +R2)

(
1− MZ

4R4

)
. (442)

To write equation 427 in the form of equation 8, I’ll need to calculate R2 in terms of r (per-

turbatively). To leading order, the AdS calculation implies R2 = e2r
(
1− 1

4
e−2r

)2
. To find the

correction to this, I just have to track the leading order term containing an M factor. Hence,

e2r
(
1− 1

4
e−2r

)2

→ 1

4
(R +

√
1 +R2)2

(
1− MZ

4R4

)2

×

(
1− 1

4

4

(R +
√
1 +R2)2

(
1 +

MZ

4R4

)2
)2

(443)

→ 1

4
(R +

√
1 +R2)2

(
1− MZ

2R4

)
×
(
1− 1

(R +
√
1 +R2)2

(
1 +

MZ

2R4

))2

. (444)

The leading order term is R2, from the AdS calculation. The leading term containingM comes
in at 1

R2 from the first factor, but 1
R6 from the second factor. Thus, I just get

e2r
(
1− 1

4
e−2r

)2

→ R2 − MZ

2R2
. (445)
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Since R = er to leading order, I also immediately get

R2 = e2r

((
1− 1

4
e−2r

)2

+
MZ

2
e−4r

)
= e2r

((
1− 1

4
e−2r

)2

+
M(1− a2)

2
e−4r

)
. (446)

Next, consider equation 427 perturbatively.

S2 =
R2

f 2h2
(447)

= R2

(
1 +R2 − 2MZ

R2
+

2Ma2

R4

)
1

R2(1 + 2Ma2/R4)
(448)

→
(
1 +R2 − 2MZ

R2

)(
1− 2Ma2

R4

)
(449)

→
(
1 +R2 − 2M(Z + a2)

R2

)
(450)

=

(
1 +R2 − 2M

R2

)
(451)

→

(
1 + e2r

(
1− 1

4
e−2r

)2

+
M(1− a2)

2
e−2r − 2Me−2r

)
(452)

→ e2r

((
1 +

1

4
e−2r

)2

− M(a2 + 3)

2
e−4r

)
. (453)

h2 = R2

(
1 +

2Ma2

R4

)
(454)

→ e2r

((
1− 1

4
e−2r

)2

+
M(1− a2)

2
e−4r

)(
1 + 2Ma2e−4r

)
(455)

→ e2r

((
1− 1

4
e−2r

)2

+

(
2Ma2 +

M(1− a2)

2

)
e−4r

)
(456)

= e2r

((
1− 1

4
e−2r

)2

+
M(1 + 3a2)

2
e−4r

)
. (457)

h2Ω =
4Ma

R2
→ 4Mae−2r to leading order. (458)

Substituting these expressions back into equation 427 yields

g = dr ⊗ dr + e2r
(
−

((
1 +

1

4
e−2r

)2

− M(a2 + 3)

2
e−4r

)
dt⊗ dt

+
1

4

((
1− 1

4
e−2r

)2

+
M(1 + 3a2)

2
e−4r

)
(dψ + cos(θ)dϕ)⊗ (dψ + cos(θ)dϕ)

−Mae−4r(dt⊗ (dψ + cos(θ)dϕ) + (dψ + cos(θ)dϕ)⊗ dt)

+
1

4

((
1− 1

4
e−2r

)2

+
M(1− a2)

2
e−4r

)
(dθ ⊗ dθ + sin2(θ)dϕ⊗ ϕ) +O(e−6r)

)
. (459)
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∴ The metric is indeed in the form of equation 8 and one can immediately read off

f(0)mndx
m ⊗ dxn = −dt⊗ dt+

1

4
(dψ + cos(θ)dϕ)⊗ (dψ + cos(θ)dϕ)

+
1

4
(dθ ⊗ dθ + sin2(θ)dϕ⊗ ϕ) and (460)

f(4)mndx
m ⊗ dxn =

M(a3 + 3)

2
dt⊗ dt+

M(1 + 3a2)

8
(dψ + cos(θ)dϕ)⊗ (dψ + cos(θ)dϕ)

−Ma(dt⊗ (dψ + cos(θ)dϕ) + (dψ + cos(θ)dϕ)⊗ dt)

+
M(1− a2)

8
(dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ). (461)

The f(0) expression also implies nm(0) ≡ δm0 and

fmn(0) ∂m ⊗ ∂n = −∂t ⊗ ∂t + 4∂ψ ⊗ ∂ψ + 4∂θ ⊗ ∂θ

+
4

sin2(θ)
(− cos(θ)∂ψ + ∂ϕ)⊗ (− cos(θ)∂ψ + ∂ϕ), (462)

the latter because
−1 0 0 0
0 1/4 0 cos(θ)/4
0 0 1/4 0
0 cos(θ)/4 0 1/4



−1 0 0 0
0 4 + 4 cot2(θ) 0 −4 cos(θ)/ sin2(θ)
0 0 4 0
0 −4 cos(θ)/ sin2(θ) 0 4/ sin2(θ)



=


1 0 0 0
0 1 + cot2(θ)− cot2(θ) 0 − cos(θ)/ sin2(θ) + cos(θ)/ sin2(θ)
0 0 1 0
0 cos(θ)(1 + cos2(θ)/ sin2(θ)− 1/ sin2(θ)) 0 − cot2(θ) + 1/ sin2(θ)


(463)

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (464)

I can now finally calculate the physical quantites that appear in theorem 4.8. By equation 81,

E =
4

16π

∫
S3

f̃mn(0) f(4)mnd(gS3) (465)

=
1

4π

∫
S3

(
− f(4)00 + 4(1 + cot2(θ))f(4)22 −

8 cos(θ)

sin2(θ)
f(4)24 + 4f(4)33 +

4

sin2(θ)
f(4)44

+ f(4)00

)
d(gS3) (466)

=
1

π

∫
S3

(
(1 + cot2(θ))

M(1 + 3a2)

8
− 2 cos(θ)

sin2(θ)

M(1 + 3a2)

8
cos(θ) +

M(1− a2)

8

+
1

sin2(θ)

(
M(1 + 3a2)

8
cos2(θ) +

M(1− a2)

8
sin2(θ)

))
d(gS3) (467)

=
M(a2 + 3)

8π

∫
S3

d(gS3) (468)

=
πM(a2 + 3)

4
, (469)
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which matches the result quoted in [46], but calculated via a different method31.
Next, by definition 4.7,

PI =
4

16π

∫
S3

f̃mn(0) f(4)mnx̂Id(gS3) (470)

=
M(a2 + 3)

8π

∫
S3

x̂Id(gS3) by the same algebra as for E (471)

= 0, (472)

which matches what one would intuitively expect for the Myers-Perry metrics.
When calculating KI and JIJ , the

∂θα

∂xI
terms in definition 4.7 are more easily calculated when

using the (θ, ϕ1, ϕ2) coordinates on S
3, as opposed to the (ψ, θ, ϕ) coordinates used to calculate

E and PI .
For both KI and JIJ , I need to first calculate f(4)0α

∂θα

∂xI
|ρ=1.

From equation 461,

f(4)0αdx
α = −Ma(dψ + cos(θ)dϕ) (473)

= −Ma((1 + cos(θ))dϕ1 + (1− cos(θ))dϕ2). (474)

From equation 432, ϕ1 = tan−1(x2/x1) and ϕ2 = tan−1(x4/x3). Hence, on the unit 3-sphere,

∂ϕ1

∂x1
=

1

1 + x22/x
2
1

(
−x2
x21

)
= − x2

x21 + x22
= − sin(ϕ1)

cos(θ/2)
, (475)

∂ϕ1

∂x2
=

1

1 + x22/x
2
1

(
1

x1

)
=

x1
x21 + x22

=
cos(ϕ1)

cos(θ/2)
(476)

and
∂ϕ1

∂x3
=
∂ϕ1

∂x4
= 0. (477)

Similarly,
∂ϕ2

∂x1
=
∂ϕ2

∂x2
= 0,

∂ϕ2

∂x3
= − sin(ϕ2)

sin(θ/2)
and

∂ϕ2

∂x4
=

cos(ϕ2)

sin(θ/2)
. (478)

Putting these expressions together with the f(4)0αdx
α expression above,

f(4)0α
∂θα

∂xI

= −Ma

(
(1 + cos(θ))

∂ϕ1

∂xI
+ (1− cos(θ))

∂ϕ2

∂xI

)
(479)

≡Ma
[
1+cos(θ)
cos(θ/2)

sin(ϕ1) −1+cos(θ)
cos(θ/2)

cos(ϕ1)
1−cos(θ)
sin(θ/2)

sin(ϕ2) −1−cos(θ)
sin(θ/2)

cos(ϕ2)
]
. (480)

Since
∫ 2π

0
sin(ϕ1,2)dϕ1,2 = 0, I immediately get∫

S3

f(4)0α
∂θα

∂xI

∣∣∣∣
ρ=1

d(gS3) = 0. (481)

∴ KI = − 1

4π

∫
S3

x̂J x̂If(4)0α
∂θα

∂xJ

∣∣∣∣
ρ=1

d(gS3). (482)

31Note that while the choice of the letter, M , for the constant, M , suggests it should be the mass/energy,
this is not the case.
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However, observe that the integrand contains

x̂Jf(4)0α
∂θα

∂xJ

∣∣∣∣
ρ=1

(483)

≡Ma
[
cos(θ/2) cos(ϕ1) cos(θ/2) sin(ϕ1) sin(θ/2) cos(ϕ2) sin(θ/2) sin(ϕ2)

]

×


1+cos(θ)
cos(θ/2)

sin(ϕ1)

−1+cos(θ)
cos(θ/2)

cos(ϕ1)
1−cos(θ)
sin(θ/2)

sin(ϕ2)

−1−cos(θ)
sin(θ/2)

cos(ϕ2)

 (484)

= 0. (485)

Hence KI = 0 too, again matching what one would intuitively expect.
Finally, there’s JIJ . For that, I need

x̂If(4)0α
∂θα

∂xJ

∣∣∣∣
ρ=1

(486)

≡Ma


cos(θ/2) cos(ϕ1)
cos(θ/2) sin(ϕ1)
sin(θ/2) cos(ϕ2)
sin(θ/2) sin(ϕ2)


×
[
1+cos(θ)
cos(θ/2)

sin(ϕ1) −1+cos(θ)
cos(θ/2)

cos(ϕ1)
1−cos(θ)
sin(θ/2)

sin(ϕ2) −1−cos(θ)
sin(θ/2)

cos(ϕ2)
]

(487)

=Ma

[ (1 + cos(θ)) sin(ϕ1) cos(ϕ1) −(1 + cos(θ)) cos2(ϕ1)
(1 + cos(θ)) sin2(ϕ1) −(1 + cos(θ)) sin(ϕ1) cos(ϕ1)

(1 + cos(θ)) tan(θ/2) sin(ϕ1) cos(ϕ2) −(1 + cos(θ)) tan(θ/2) cos(ϕ1) cos(ϕ2)
(1 + cos(θ)) tan(θ/2) sin(ϕ1) sin(ϕ2) −(1 + cos(θ)) tan(θ/2) cos(ϕ1) sin(ϕ2)

(1− cos(θ)) cot(θ/2) cos(ϕ1) sin(ϕ2) −(1− cos(θ)) cot(θ/2) cos(ϕ1) cos(ϕ2)
(1− cos(θ)) cot(θ/2) sin(ϕ1) sin(ϕ2) −(1− cos(θ)) cot(θ/2) sin(ϕ1) cos(ϕ2)

(1− cos(θ)) cos(ϕ2) sin(ϕ2) −(1− cos(θ)) cos2(ϕ2)
(1− cos(θ)) sin2(ϕ2) −(1− cos(θ)) sin(ϕ2) cos(ϕ2)

]
. (488)

This appears as an integrand inside
∫
S3 d(gS3). In particular, the 2π range of ϕ1 and ϕ2 means

those integrals can be done inspection, leaving∫ 2π

0

∫ 2π

0

x̂If(4)0α
∂θα

∂xJ

∣∣∣∣
ρ=1

dϕ1dϕ2

≡ 4π2Ma


0 −(1 + cos(θ))/2 0 0

(1 + cos(θ))/2 0 0 0
0 0 0 −(1− cos(θ))/2
0 0 (1− cos(θ))/2 0

 . (489)

Finally, by definition 4.7,

JIJ =
1

4π

∫
S3

f(4)0α

(
x̂I
∂θα

∂xJ

∣∣∣∣
ρ=1

− x̂J
∂θα

∂xI

∣∣∣∣
ρ=1

)
d(gS3) (490)

≡ πMa

∫
π

0


0 −(1 + cos(θ)) 0 0

1 + cos(θ) 0 0 0
0 0 0 −(1− cos(θ))
0 0 1− cos(θ) 0

 sin
(
θ
2

)
cos
(
θ
2

)
2

dθ

(491)
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Then, since
∫ π
0

1
2
sin(θ/2) cos(θ/2)dθ = 1

4

∫ π
0
sin(θ)dθ = 1

2
and∫ π

0
cos(θ)1

2
sin(θ/2) cos(θ/2)dθ = 1

8

∫ π
0
sin(2θ)dθ = 0, I get

JIJ ≡ πMa

2


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 . (492)

This result justifies interpreting the original metric - equation 427 - as containing two equal,
independent angular momenta, πMa/2. If one measures angular momenta with respect to ∂

∂ψ

and ∂
∂ϕ

instead, then since ∂
∂ψ

= 1
2
( ∂
∂ϕ1

+ ∂
∂ϕ2

) and ∂
∂ϕ

= 1
2
( ∂
∂ϕ1

− ∂
∂ϕ2

), the angular momenta

would be πMa/2 and 0 respectively - matching the result in [46] up to a factor of two (which
is presumably only a matter of conventions).
At last, I can consider theorem 4.8, which reduces to saying EI + iJ12γ

0γ1γ2 + iJ34γ
0γ3γ4 is

non-negative definite.
Using computer algebra for example, one can check the eigenvalues of this matrix are
E + J12 + J34, E − J12 + J34, E + J12 − J34 and E − J12 − J34.
∴ Non-negative definiteness is equivalent to

E ≥ |J12|+ |J34|, (493)

which one can recognise as a BPS bound of 5D gauged supergravity. In terms of the actual
values I’ve calculated for E and JIJ , equation 493 says

πM(a2 + 3)

4
≥ πMa ⇐⇒ (a− 1)(a− 3) ≥ 0. (494)

Therefore, supersymmetric limits are reached by taking a→ 1− or a→ 3+. Unlike the charged,
asymptotically flat case [18, 19], here the BPS bound does not coincide with the condition to
have a regular event horizon32. Instead, the BPS bound can lead to singular horizons now.
While perhaps strange, this is behaviour known to occur for supersymmetric limits of rotating
black holes with Λ < 0 [47, 48].

4.3 General cross-sections

The Kottler metrics are

g = −(c+R2)dt⊗ dt+
dR⊗ dR

c+R2
+R2g(c), (495)

where c = 1, 0,−1, g(1) is the metric on the unit (n − 2)−sphere, g(0) is the metric on a unit
(n − 2)−torus and g(−1) is the metric on a compact identification of (n − 2)−dimensional
hyperbolic space. In the last two sections I have studied the round sphere and the torus.
However, these metrics continue to satisfy the Einstein equation, Rab = −1

2
(n−1)(n−2)gab, as

long as g(c) has Ricci tensor equal to c(n− 3)δAB. Re-writing the metric in Fefferman-Graham
coordinates gives the following definition.

Definition 4.9 (Kottler with cross-section, H). A metric is defined to be Kottler with cross-
section, H, if and only if

g = dr ⊗ dr + e2r
(
−
(
1 +

c

4
e−2r

)2
dt⊗ dt+

(
1− c

4
e−2r

)2
H

)
(496)

and H is a Riemannian, Einstein metric on a compact manifold such that R
(H)
AB = c(n− 3)δAB

for c = −1, 0 or 1.

32This is especially manifest given (a− 1)(a− 3) doesn’t even depend on M .
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The main objective of this section is to prove that if H is “symmetric” in some sense, then there
is a positive energy theorem for spacetimes that are asymptotically Kottler with cross-section,
H, i.e. asymptotically locally AdS spacetimes with f(0) = −dt⊗ dt+H.

Lemma 4.10. The non-zero connection 1-forms (up to antisymmetries) for equation 496 are

ω01 = −
er − c

4
e−r

er + c
4
e−r

e0, ωA1 =
er + c

4
e−r

er − c
4
e−r

eA and ωAB = ω
(H)
AB , (497)

where e0 =
(
er +

c

4
e−r
)
dt, e1 = dr and eA =

(
er − c

4
e−r
)
e(H)A. (498)

Proof. For this choice of vielbein,

de0 =
(
er − c

4
e−r
)
dr ∧ dt =

er − c
4
e−r

er + c
4
e−r

e1 ∧ e0, (499)

de1 = 0 and (500)

deA =
(
er +

c

4
e−r
)
dr ∧ e(H)A +

(
er − c

4
e−r
)
de(H)A (501)

=
er + c

4
e−r

er − c
4
e−r

e1 ∧ eA +
(
er − c

4
e−r
)
de(H)A. (502)

ω
(H)
AB satisfy de(H)A = −ω(H)A

B ∧ e(H)B by definition.
Then, by inspection, the ωµν claimed in the lemma likewise satisfy deµ = −ωµν ∧ eν .
Since connection coefficients are unique, the claimed coefficients must be correct. □

Lemma 4.11. If ∇µεk = 0 for a Kottler metric with cross-section, H, then

εk = er/2P−
1 ε− + e−r/2P+

1 ε+, (503)

where ε± must solve D
(H)
A ε− = −iγAε+, D

(H)
A ε+ = ic

4
γAε−, ∂tε− = iγ0ε+, ∂tε+ = ic

4
γ0ε− and

∂rε− = ∂rε+ = 0.

Proof. The equation to solve is

0 = ∇µεk = e µ′

µ ∂µ′εk −
1

4
ωνρµγ

νρεk +
i

2
γµεk. (504)

Start with µ = 1. Then, from lemma 4.10, equation 504 reduces to 0 = ∂rεk +
i
2
γ1εk.

∴ εk = e−iγ1r/2εr for some spinor, εr, that doesn’t depend on r.
Split εr up into eigenspaces of γ1, i.e. εr = P−

1 ε− + P+
1 ε+.

∴ εk = e−iγ1r/2(P−
1 ε− + P+

1 ε+) = er/2P−
1 ε− + e−r/2P+

1 ε+.
Next consider µ = 0. Then, from lemma 4.10

∴ 0 =
1

er + c
4
e−r

∂tεk +
er − c

4
e−r

2(er + c
4
e−r)

γ0γ1 − i

2
γ0εk. (505)

∴ 0 = ∂t(e
r/2P−

1 ε− + e−r/2P+
1 ε+) +

1

2

(
er − c

4
e−r
)
γ0γ1(er/2P−

1 ε− + e−r/2P+
1 ε+)

− i

2

(
er +

c

4
e−r
)
γ0(er/2P−

1 ε− + e−r/2P+
1 ε+) (506)

= er/2P−
1 ∂tε− + e−r/2P+

1 ∂tε+ +
i

2
e3r/2γ0P−

1 ε− − ic

8
e−r/2γ0P−

1 ε− − i

2
er/2γ0P+

1 ε+

+
ic

8
e−3r/2γ0P+

1 ε+ − i

2
e3r/2γ0P−

1 ε− − ic

8
e−r/2γ0P−

1 ε− − i

2
er/2γ0P+

1 ε+

− ic

8
e−3r/2γ0P+

1 ε+ (507)

= er/2P−
1

(
∂tε− − iγ0ε+

)
+ e−r/2P+

1

(
∂tε+ − ic

4
γ0ε−

)
. (508)
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Since the two γ1 eigenspaces have no non-trivial intersection, it follows that ∂tε− = iγ0ε+ and
∂tε+ = ic

4
γ0ε−.

Finally, consider µ = A. Before applying lemma 4.10 to equation 504, note that

ωAB = ω
(H)
AB =⇒ ωABCe

C = ω
(H)
ABCe

(H)C (509)

=
1

er − c
4
e−r

ω
(H)
ABCe

C . (510)

∴ ωABC =
1

er − c
4
e−r

ω
(H)
ABC . (511)

Hence, the Killing spinor equation says

0 =
1

er − c
4
e−r

e
(H)α
A ∂αεk −

1

4(er − c
4
e−r)

ω
(H)
BCAγ

BCεk −
er + c

4
e−r

2(er − c
4
e−r)

γAγ1εk +
i

2
γAεk. (512)

∴ 0 = D
(H)
A εk −

1

2

(
er +

c

4
e−r
)
γAγ1εk +

i

2

(
er − c

4
e−r
)
γAεk (513)

= D
(H)
A (er/2P−

1 ε− + e−r/2P+
1 ε+)−

1

2

(
er +

c

4
e−r
)
γAγ1(er/2P−

1 ε− + e−r/2P+
1 ε+)

+
i

2

(
er − c

4
e−r
)
γA(e

r/2P−
1 ε− + e−r/2P+

1 ε+) (514)

= er/2P−
1 D

(H)
A ε− + e−r/2P+

1 D
(H)
A ε+ − i

2
e3r/2γAP

−
1 ε− − ic

8
e−r/2γAP

−
1 ε− +

i

2
er/2γAP

+
1 ε+

+
ic

8
e−3r/2γAP

+
1 ε+ +

i

2
e3r/2γAP

−
1 ε− − ic

8
e−r/2γAP

−
1 ε− +

i

2
er/2γAP

+
1 ε+

− ic

8
e−3r/2γAP

+
1 ε+ (515)

= er/2P−
1

(
D

(H)
A ε− + iγAε+

)
+ e−r/2P+

1

(
D

(H)
A ε+ − ic

4
γAε−

)
. (516)

∴ D
(H)
A ε− = −iγAε+ and D

(H)
A ε+ = ic

4
γAε−. □

Theorem 4.12. The most general solution to ∇µεk = 0 for a Kottler metric with cross-section,
H, is

εk =


er/2P−

1 εH for c = 0

er/2P−
1

(
eiγ

0t/2 − ie−iγ0t/2
)
εH + 1

2
e−r/2P+

1

(
eiγ

0t/2 + ie−iγ0t/2
)
εH for c = 1

0 for c = −1

(517)

where εH solves D
(H)
A εH = c

2
γAεH and ∂tεH = 0.

Proof. Start with c = 0. From lemma 4.11, I need ∂tε− = iγ0ε+, ∂tε+ = 0, D
(H)
A ε− = −iγAε+

and D
(H)
A ε+ = 0.

From the first two equations, it follows that ε− = itγ0ε+ + εH for some spinor, εH , that (like
ε+) doesn’t depend on t.

∴ −iγAε+ = D
(H)
A ε− = itγ0D

(H)
A ε+ +D

(H)
A εH = 0 +D

(H)
A εH .

∴ D(H)AD
(H)
A εH = −iγAD

(H)
A ε+ = 0.

Let Σt,r be constant t and r surface. Then, by Σt,r’s assumed compactness,

0 =

∫
Σt,r

ε†HD
(H)AD

(H)
A (εH)d(H) (518)

= −
∫
Σt,r

(
D(H)AεH

)†
D

(H)
A (εH)d(H) =⇒ D

(H)
A εH = 0. (519)
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Since −iγAε+ = D
(H)
A εH from above, it follows that ε+ = 0.

That leaves ε− = εH with εH solving D
(H)
A εH = 0.

It follows by inspection that all six conditions in lemma 4.11 are now satisfied - no further
constraints are necessary.
Next, consider c = 1.
∴ I have to solve ∂tε− = iγ0ε+, ∂tε+ = i

4
γ0ε−, D

(H)
A ε− = −iγAε+ and D

(H)
A ε+ = i

4
γAε−.

Let

ψ = ε− + 2ε+ and φ = ε− − 2ε+ ⇐⇒ ε− =
1

2
(ψ + φ) and ε+ =

1

4
(ψ − φ). (520)

∴ ∂tψ = i
2
γ0ψ , ∂tφ = − i

2
γ0φ, D

(H)
A ψ = i

2
γAφ and D

(H)
A φ = − i

2
γAψ.

∴ ψ = 2eiγ
0t/2ψt and φ = 2e−iγ0t/2φt for some spinors, ψt and φt, that don’t depend on t.

Equivalently, ε− = eiγ
0t/2ψt + e−iγ0t/2φt and ε+ = 1

2
(eiγ

0t/2ψt − e−iγ0t/2φt).
By construction, I can assume without loss of generality that P±

1 ε± = ε± ⇐⇒ ε± = ±iγ1ε±.
∴ ε− = eiγ

0t/2ψt + e−iγ0t/2φt = −iγ1(eiγ
0t/2ψt + e−iγ0t/2φt) = −ie−iγ0t/2γ1ψt − ieiγ

0t/2γ1φt.
Setting t = 0 in the previous equation then implies

ψt + φt = −iγ1ψt − iγ1φt (521)

Meanwhile, setting t = π implies

(cos(π/2)I + i sin(π/2)γ0)ψt + (cos(π/2)I − i sin(π/2)γ0)φt

= −i(cos(π/2)I − i sin(π/2)γ0)γ1ψt − i(cos(π/2)I + i sin(π/2)γ0)γ1φt (522)

⇐⇒ iγ0ψt − iγ0φt = −γ0γ1ψt + γ0γ1φt (523)

⇐⇒ ψt − φt = iγ1ψt − iγ1φt. (524)

Putting the t = 0, π equations together, it immediately follows that ψt = −iγ1φt (and this
relation solves both equations).

∴ ε− = eiγ
0t/2ψt + e−iγ0t/2φt = (I − iγ1)eiγ

0t/2ψt and (525)

ε+ =
1

2
(eiγ

0t/2ψt − e−iγ0t/2φt) =
1

2
(I + iγ1)eiγ

0t/2ψt. (526)

Next, consider the D
(H)
A constraints on ψ and φ. In terms of ψt and φt, they now imply

2eiγ
0t/2D

(H)
A ψt =

i

2
γA2e

−iγ0t/2φt ⇐⇒ D
(H)
A ψt =

i

2
γAφt =

1

2
γAγ

1ψt. (527)

Let εH = 1
2
(I + γ1)ψt ⇐⇒ ψt = (I − γ1)εH .

∴ D
(H)
A εH = 1

2
(I+γ1)D

(H)
A ψt =

1
2
(I+γ1)1

2
γAγ

1ψt =
1
4
γA(I−γ1)γ1ψt = 1

4
γA(γ

1+I)ψt =
1
2
γAεH .

Writing ε± in terms of εH , I get

ε− = (I − iγ1)eiγ
0t/2(I − γ1)εH = (I − iγ1)(eiγ

0t/2 − ie−iγ0t/2)εH and (528)

ε+ =
1

2
(I + iγ1)eiγ

0t/2(I − γ1)εH =
1

2
(I + iγ1)(eiγ

0t/2 + ie−iγ0t/2)εH , (529)

which is the result claimed in the theorem.
For completeness, I’ll check that the conditions in lemma 4.11 are indeed all satisfied. Take

ε− =
(
eiγ

0t/2 − ie−iγ0t/2
)
εH and ε+ =

1

2

(
eiγ

0t/2 + ie−iγ0t/2
)
εH . (530)
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The time derivative are

∴ ∂tε− =

(
1

2
iγ0eiγ

0t/2 − 1

2
γ0e−iγ0t/2

)
εH =

i

2
γ0
(
eiγ

0t/2 + ie−iγ0t/2
)
εH = iγ0ε+ and (531)

∂tε+ =
1

2

(
1

2
iγ0eiγ

0t/2 +
1

2
γ0e−iγ0t/2

)
εH =

i

4
γ0
(
eiγ

0t/2 − ie−iγ0t/2
)
εH =

i

4
γ0ε−, (532)

while the space derivatives are

D
(H)
A ε− =

(
eiγ

0t/2 − ie−iγ0t/2
)
D

(h)
A εH (533)

=
(
eiγ

0t/2 − ie−iγ0t/2
) 1

2
γAεH (534)

=
1

2
γA

(
e−iγ0t/2 − ieiγ

0t/2
)
εH (535)

= −iγAε+ and (536)

D
(H)
A ε+ =

1

2

(
eiγ

0t/2 + ie−iγ0t/2
)
D

(h)
A εH (537)

=
1

2

(
eiγ

0t/2 + ie−iγ0t/2
) 1

2
γAεH (538)

=
1

4
γA

(
e−iγ0t/2 + ieiγ

0t/2
)
εH (539)

=
i

4
γAε−, (540)

which implies all six constraints in lemma 4.11 are satisfied.
Finally, consider c = −1.
The D

(H)
A constraints are D

(H)
A ε− = −iγAε+ and D

(H)
A ε+ = − i

4
γAε−.

∴ D(H)AD
(H)
A ε− = −iγAD

(H)
A ε+ = −1

4
γAγAε− = n−2

4
ε−.

Then, from Σt,r’s assumed compactness,∫
Σt,r

ε†−ε−d(H) =
4

n− 2

∫
Σt,r

ε†−D
(H)AD

(H)
A (ε−)d(H) (541)

= − 4

n− 2

∫
Σt,r

(D(H)Aε−)
†D

(H)
A (ε−)d(H). (542)

The LHS is non-negative while the RHS is non-positive, meaning they both must be zero.
∴ ε− = 0

∴ ε+ = 0 too from D
(H)
A ε− = −iγAε+. □

The main upshot of this corollary is that given any static boundary, f(0) = −dt ⊗ dt + H,
if H admits a parallel spinor or (real) Killing spinor, the full spacetime will admit a positive
energy theorem33. Furthermore, the “boundary charge” can now be evaluated solely in terms
of quantities defined on the boundary, ∂∞Σt.

Theorem 4.13. For spacetimes which are asymptotically Kottler with cross-section, H, if the
Einstein equation and the dominant energy condition hold, then

Q(ε) = (n− 1)

∫
∂∞Σt

pMε
†
H

(
cos(t/2)I − sin(t/2)γ0

)
γ0γMP−

1

× (cos(t/2)I − sin(t/2)γ0)εH d(H) when c = 1 (543)

and Q(ε) =
n− 1

2

∫
∂∞Σt

pMε
†
Hγ

0γMP−
1 εH d(H) when c = 0. (544)

33If the asymptotic region admits multiple spin structures, then the usual caveat about compatible spin
structures still applies.
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for εH solving D
(H)
A εH = c

2
γAεH and ∂tεH = ∂rεH = 0. In both cases,

Q(ε) = 2

∫
Σt

(
(∇Iε)

†∇Iε+ 4πT 0µε†γ0γµε
)
dV ≥ 0. (545)

Proof. The proof is simply a matter of substituting equation 517 into theorem 3.19.
As the boundary geometry is f(0) = −dt ⊗ dt + H, the integration measure,

√
ι⋆f(0)d

n−2x
reduces to d(H).
For the rest of the integrand, consider c = 0, 1 separately. When c = 0,

εkγ
Mεk = erε†HP

−
1 γ

0γMP−
1 εH = erε†Hγ

0γMP−
1 εH (546)

and hence the claimed result follows.
Next, consider c = 1. The e−r factor in theorem 3.19 means it suffices to ignore any components
of εkγ

Mεk less than O(er).

∴ εkγ
Mεk → er(P−

1 ε−)
†γ0γMP−

1 ε− (547)

= erε†−γ
0γMP−

1 ε− (548)

= er
((

eiγ
0t/2 − ie−iγ0t/2

)
εH

)†
γ0γMP−

1

(
eiγ

0t/2 − ie−iγ0t/2
)
εH (549)

= erε†H

(
e−iγ0t/2 + ieiγ

0t/2
)
γ0γMP−

1

(
eiγ

0t/2 − ie−iγ0t/2
)
εH (550)

= erε†H
(
cos(t/2)I − i sin(t/2)γ0 + i cos(t/2)I − sin(t/2)γ0

)
γ0γMP−

1

×
(
cos(t/2)I + i sin(t/2)γ0 − i cos(t/2)I − sin(t/2)γ0

)
εH (551)

= erε†H(1 + i)
(
cos(t/2)I − sin(t/2)γ0

)
γ0γMP−

1

× (1− i)
(
cos(t/2)I − sin(t/2)γ0

)
εH (552)

= 2erε†H
(
cos(t/2)I − sin(t/2)γ0

)
γ0γMP−

1

(
cos(t/2)I − sin(t/2)γ0

)
εH , (553)

which gives the claimed result. □

Solutions to D
(H)
A εH = 0 and D

(H)
A εH = 1

2
γAεH are well-studied problems for mathematicians.

One subtlety in comparing with the maths literature is that {γA}n−1
A=2 don’t form an irreducible

representation of the Clifford algebra; a (Riemannian) Clifford algebra with n − 2 elements
would have 2⌊(n−2)/2⌋× 2⌊(n−2)/2⌋ matrices, not 2⌊n/2⌋× 2⌊n/2⌋ matrices like {γA}n−1

A=2 ⊂ {γµ}n−1
µ=0.

The doubled size means there are effectively two irreducible representations summed in γA.
This can be made much more concrete, as follows. Suppose {γ̂A}n−1

A=2 form an irreducible
representation of the Clifford algebra with n− 2 elements. Then, γµ can be chosen to be

γ0 =

[
I 0
0 −I

]
, γ1 =

[
0 −I
I 0

]
and γA =

[
0 γ̂A

γ̂A 0

]
. (554)

Likewise, split εH into two 2⌊n/2⌋−1 component blocks, i.e. εH = [ψ, φ]T. Then,

D
(H)
A εH =

(
e
(H)α
A ∂α −

1

8
ω
(H)
BCA

([
0 γ̂A

γ̂A 0

] [
0 γ̂B

γ̂B 0

]
−
[
0 γ̂B

γ̂B 0

] [
0 γ̂A

γ̂A 0

]))[
ψ
φ

]
(555)

=

(
e
(H)α
A ∂α −

1

4
ω
(H)
BCA

[
γ̂AB 0
0 γ̂AB

])[
ψ
φ

]
(556)

=

[
D̂

(H)
A ψ

D̂
(H)
A φ

]
. (557)
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∴ The general solution to D
(H)
A εH = 0 on M is constructed from a pair of spinors on the cross-

section, ψ and φ, each parallel with respect to D̂
(H)
A . There are many compact Riemannian

manifolds admitting parallel spinors - see [49] for a classification in the simply connected case
and [50] for more general comments.
Similarly, since

γAεH =

[
0 γ̂A
γ̂A 0

] [
ψ
φ

]
=

[
γ̂Aφ
γ̂Aψ

]
, (558)

D
(H)
A ε = 1

2
γAεH =⇒ D̂

(H)
A ψ = 1

2
γ̂Aφ and D̂

(H)
A φ = 1

2
γ̂Aψ.

Let ε̂
(±)
H = ψ ± φ.

∴ D̂
(H)
A ε̂

(±)
H = ±1

2
γ̂Aε̂

(±)
H and εH =

1

2

[
ε̂
(+)
H + ε̂

(−)
H

ε̂
(+)
H − ε̂

(−)
H

]
. (559)

∴ The general solution to D
(H)
A εH = 1

2
γAεH on M is constructed from a pair of real Killing

spinors on the cross-section, ε̂
(±)
H , satisfying D̂

(H)
A ε̂

(±)
H = ±1

2
γ̂Aε̂

(±)
H .

From [51], there are some strenuous constraints on solutions to D̂
(H)
A ε̂

(±)
H = ±1

2
γ̂Aε̂

(±)
H . First of

all, there is not necessarily any correspondence between solutions of D̂
(H)
A ε̂

(+)
H = 1

2
γ̂Aε̂

(+)
H and

D̂
(H)
A ε̂

(−)
H = −1

2
γ̂Aε̂

(−)
H (albeit swapping orientation swaps the meaning of + and −). Moreover,

for any even dimension, except n − 2 = 6, the only metric, H, admitting a solution to either
equations is the standard metric on Sn−2, which I’ve already considered in section 4.2 and will
revisit in section 4.3.3. For odd dimensions, for simply connected cross-sections, other than the
round sphere, one can also have Sasaki-Einstein spaces and Sasaki-3 spaces in general, besides
some other specific examples when n−2 = 7. Furthermore, having both ε̂

(+)
H and ε̂

(−)
H non-zero

is only possible for simply connected cross-sections when n− 2 = 1 (mod) 4.

Having decomposed solutions of D
(H)
A = c

2
γAεH into spinors defined completely on the cross-

section, it makes sense to re-write theorem 4.13 purely in terms of cross section data.

Theorem 4.14. Suppose a spacetime is asymptotically Kottler with cross-section, H. Assume
the Einstein equation and the dominant energy condition hold. Then, when c = 1,

Q(ε) =
n− 1

4

∫
∂∞Σt

(
ε̂
(+)†
H + ieitε̂

(−)†
H

) (
p0I − ipAγ̂

A
) (
ε̂
(+)
H − ie−itε̂

(−)
H

)
d(H). (560)

for ε̂
(±)
H solving D̂

(H)
A ε̂

(±)
H = ±1

2
γ̂Aε̂

(±)
H . Likewise, when c = 0,

Q(ε) =
n− 1

4

∫
∂∞Σt

ψ̂† (p0I − ipAγ̂
A
)
ψ̂ d(H). (561)

where ψ̂ solves D̂
(H)
A ψ̂ = 0. In both cases,

Q(ε) = 2

∫
Σt

(
(∇Iε)

†∇Iε+ 4πT 0µε†γ0γµε
)
dV ≥ 0. (562)

Proof. Start with c = 0. From the discussion above, the most general solution to DAεH = 0 is
given by εH = [ψ, φ]T where ψ and φ are both parallel with respect to D̂

(H)
A .
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Then, to apply theorem 4.13, I need to evaluate pMε
†
Hγ

0γMP−
1 εH .

ε†Hγ
0γ0P−

1 εH =
[
ψ† φ†]T 1

2

[
I iI

−iI I

] [
ψ
φ

]
(563)

=
1

2

(
ψ†ψ + iψ†φ− iφ†ψ + φ†φ

)
. (564)

ε†Hγ
0γAP−

1 εH =
[
ψ† φ†]T [I 0

0 −I

] [
0 γ̂A

γ̂A 0

]
1

2

[
I iI

−iI I

] [
ψ
φ

]
(565)

=
1

2

[
ψ† φ†]T [ 0 γ̂A

−γ̂A 0

] [
ψ + iφ
−iψ + φ

]
(566)

=
1

2

[
ψ† φ†]T [−iγ̂Aψ + γ̂Aφ

−γ̂Aψ − iγ̂Aφ

]
(567)

=
1

2

(
−iψ†γ̂Aψ + ψ†γ̂Aφ− φ†γ̂Aψ − iφ†γ̂Aφ

)
. (568)

Putting both parts together,

pMε
†
Hγ

0γMP−
1 εH =

1

2

(
ψ† − iφ†) (p0I − ipAγ̂

A) (ψ + iφ) . (569)

Defining ψ̂ = ψ + iφ proves the claim for c = 0.
Next, let c = 1. This time, by the discussion earlier,

εH =
1

2

[
ε̂
(+)
H + ε̂

(−)
H

ε̂
(+)
H − ε̂

(−)
H

]
(570)

for ε̂
(±)
H solving D̂

(H)
A ε̂

(±)
H = ±1

2
γ̂Aε̂

(±)
H . By theorem 4.13 I need to evaluate

pMε
†
H

(
cos(t/2)I − sin(t/2)γ0

)
γ0γMP−

1 (cos(t/2)I − sin(t/2)γ0)εH . (571)

When M = 0, I get

ε†H
(
cos(t/2)I − sin(t/2)γ0

)
P−
1 (cos(t/2)I − sin(t/2)γ0)εH

=
1

8

[
ε̂
(+)†
H + ε̂

(−)†
H ε̂

(+)†
H − ε̂

(−)†
H

] [(cos(t/2)− sin(t/2))I 0
0 (cos(t/2) + sin(t/2))I

] [
I iI

−iI I

]
×
[
(cos(t/2)− sin(t/2))I 0

0 (cos(t/2) + sin(t/2))I

][
ε̂
(+)
H + ε̂

(−)
H

ε̂
(+)
H − ε̂

(−)
H

]
(572)

=
1

8

[
ε̂
(+)†
H + ε̂

(−)†
H ε̂

(+)†
H − ε̂

(−)†
H

] [ (cos(t/2)− sin(t/2))I i(cos(t/2)− sin(t/2))I
−i(cos(t/2) + sin(t/2))I (cos(t/2) + sin(t/2))I

]
×

[
(cos(t/2)− sin(t/2))(ε̂

(+)
H + ε̂

(−)
H )

(cos(t/2) + sin(t/2))(ε̂
(+)
H − ε̂

(−)
H )

]
(573)

=
1

8

[
ε̂
(+)†
H + ε̂

(−)†
H ε̂

(+)†
H − ε̂

(−)†
H

]
×

[
(cos(t/2)− sin(t/2))2(ε̂

(+)
H + ε̂

(−)
H ) + i(cos2(t/2)− sin2(t/2))(ε̂

(+)
H − ε̂

(−)
H )

−i(cos2(t/2)− sin2(t/2))(ε̂
(+)
H + ε̂

(−)
H ) + (cos(t/2) + sin(t/2))2(ε̂

(+)
H − ε̂

(−)
H )

]
(574)

=
1

8

(
(ε̂

(+)†
H + ε̂

(−)†
H )(1− sin(t))(ε̂

(+)
H + ε̂

(−)
H ) + (ε̂

(+)†
H + ε̂

(−)†
H )i cos(t)(ε̂

(+)
H − ε̂

(−)
H )

+ (ε̂
(+)†
H − ε̂

(−)†
H )(−i cos(t))(ε̂

(+)
H + ε̂

(−)
H ) + (ε̂

(+)†
H − ε̂

(−)†
H )(1 + sin(t))(ε̂

(+)
H − ε̂

(−)
H )
)

(575)

=
1

4

(
ε̂
(+)†
H ε̂

(+)
H − ie−itε̂

(+)†
H ε̂

(−)
H + ieitε̂

(−)†
H ε̂

(+)
H + ε̂

(−)†
H ε̂

(−)
H

)
. (576)

56



Similarly, when M = A,

ε†H
(
cos(t/2)I − sin(t/2)γ0

)
γ0γAP−

1 (cos(t/2)I − sin(t/2)γ0)εH

=
1

8

[
ε̂
(+)†
H + ε̂

(−)†
H ε̂

(+)†
H − ε̂

(−)†
H

] [(cos(t/2)− sin(t/2))I 0
0 (cos(t/2) + sin(t/2))I

] [
0 γ̂A

−γ̂A 0

]
×
[
I iI

−iI I

] [
(cos(t/2)− sin(t/2))I 0

0 (cos(t/2) + sin(t/2))I

][
ε̂
(+)
H + ε̂

(−)
H

ε̂
(+)
H − ε̂

(−)
H

]
(577)

=
1

8

[
ε̂
(+)†
H + ε̂

(−)†
H ε̂

(+)†
H − ε̂

(−)†
H

] [ 0 (cos(t/2)− sin(t/2))γ̂A

−(cos(t/2) + sin(t/2))γ̂A 0

]
×
[

(cos(t/2)− sin(t/2))I i(cos(t/2) + sin(t/2))I
−i(cos(t/2)− sin(t/2))I (cos(t/2) + sin(t/2))I

] [
ε̂
(+)
H + ε̂

(−)
H

ε̂
(+)
H − ε̂

(−)
H

]
(578)

=
1

8

[
ε̂
(+)†
H + ε̂

(−)†
H ε̂

(+)†
H − ε̂

(−)†
H

] [−i(1− sin(t))γ̂A cos(t)γ̂A

− cos(t)γ̂A −i(1 + sin(t))γ̂A

][
ε̂
(+)
H + ε̂

(−)
H

ε̂
(+)
H − ε̂

(−)
H

]
(579)

=
1

4

(
−iε̂

(+)†
H γ̂Aε̂

(+)
H − e−itε̂

(+)†
H γ̂Aε̂

(−)
H + eitε̂

(−)†
H γ̂Aε̂

(+)
H − iε̂

(−)†
H γ̂Aε̂

(−)
H

)
. (580)

Putting both parts together, I get

pMε
†
H

(
cos(t/2)I − sin(t/2)γ0

)
γ0γMP−

1 (cos(t/2)I − sin(t/2)γ0)εH

=
(
ε̂
(+)†
H + ieitε̂

(−)†
H

) (
p0I − ipAγ̂

A
) (
ε̂
(+)
H − ie−itε̂

(−)
H

)
, (581)

which is the claimed integrand. □

When c = 1, the different spinor bilinears appearing in theorem 5.9 have some geometric
interpretation.

Lemma 4.15. ε̂
(±)†
H ε̂

(±)
H are constants and k̂(±)A = −iε̂

(±)†
H γ̂Aε̂

(±)
H are (real) Killing vectors for

H. Define functions, ŝ(±) = ε̂
(∓)†
H ε̂

(±)
H . Then, ξ̂(±)A = ε̂

(∓)†
H γ̂Aε̂

(±)
H are (complex) conformal

Killing vectors for H with ξ̂
(±)
A = ±D̂(H)

A ŝ(±) and D̂
(H)
A ξ̂

(±)
B = −δAB ŝ(±).

Proof. The proof is repeatedly applying the Killing spinor equation.

D̂
(H)
A

(
ε̂
(±)†
H ε̂

(±)
H

)
=

(
±1

2
γ̂Aε̂

(±)
H

)†

ε̂
(±)
H + ε̂

(±)†
H

(
±1

2
γ̂Aε̂

(±)
H

)
(582)

= ∓1

2
ε̂
(±)†
H γ̂Aε̂

(±)
H +±1

2
ε̂
(±)†
H γ̂Aε̂

(±)
H (583)

= 0. (584)

∴ ε̂
(±)†
H ε̂

(±)
H are constants.

D̂
(H)
A k̂

(±)
B = −i

(
∓1

2
ε̂
(±)†
H γ̂A

)
γ̂B ε̂

(±)
H − iε̂

(±)†
H γ̂B

(
±1

2
γ̂Aε̂

(±)
H

)
= ±iε̂

(±)†
H γ̂AB ε̂

(±)
H . (585)

∴ The symmetric part of D̂
(H)
A k̂

(±)
B is zero.

∴ k̂
(±)
A are Killing vectors.

D̂
(H)
A ŝ(±) =

(
±1

2
ε̂
(∓)†
H γ̂A

)
ε̂
(±)
H + ε̂

(∓)†
H

(
±1

2
γ̂Aε̂

(±)
H

)
= ±ξ̂A. (586)
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D̂
(H)
A ξ̂

(±)
B =

(
±1

2
ε̂
(∓)†
H γ̂A

)
γ̂B ε̂

(±)
H + ε̂

(∓)†
H γ̂B

(
±1

2
γ̂Aε̂

(±)
H

)
= ∓δAB ε̂(∓)†

H ε̂
(±)
H = ∓δAB ŝ(±). (587)

∴ The symmetric and traceless part of D̂
(H)
A ξ̂

(±)
B is zero.

∴ ξ̂(±) is a conformal Killing vector. □

Corollary 4.15.1. If H is not a round metric on a sphere, then ŝ(±) = 0 and ξ̂
(±)
A = 0.

Proof. From the lemma,

D̂
(H)
A D̂

(H)
B ŝ(±) = D̂

(H)
A

(
±ξ̂B

)
= −δAB ŝ(±). (588)

From [52], the only compact, complete, Riemannian manifold admitting a solution to this
equation is the round sphere. □

Note this corollary does not preclude having both ε̂
(+)
H and ε̂

(−)
H non-zero. However, it does

mean ε̂
(+)
H and ε̂

(−)
H are orthogonal on anything aside from a round sphere cross-section.

Definition 4.16 (“Conserved quantities” on the cross-section). For a Killing vector, k̂, of H,
define a “conserved quantity” by

Qk̂ =
n− 1

16π

∫
∂∞Σt

pAk̂
Ad(H) =

n− 1

16π

∫
∂∞Σt

f(n−1)0αk̂
αd(H). (589)

Theorem 4.17. Define k̂(±)A = −iε̂
(±)†
H γ̂Aε̂

(±)
H . Without loss of generality, scale ε̂

(±)
H such that

ε̂
(±)†
H ε̂

(±)
H = δ̂(±), where δ̂(±) = 1 if a non-trivial ε̂

(±)
H exists and δ̂(±) = 0 otherwise. Then, if

c = 1 and H is not a round metric on a sphere, theorem 4.14 can be re-written as

Q(ε) = 4π
(
E(δ̂(+) + δ̂(−)) +Qk̂(+) +Qk̂(−)

)
(590)

= 2

∫
Σt

(
(∇Iε)

†∇Iε+ 4πT 0µε†γ0γµε
)
dV ≥ 0. (591)

Proof. Direct application of theorem 4.14, definitions 3.18 & 4.16, equation 81, lemma 4.15
and corollary 4.15.1. □

I will illustrate some of these cross-section based theorems in the next two subsections by
studying the lens space, L(p, 1), and a squashed S7 - both some of the simplest deformations
of the round sphere.

4.3.1 Squashed S7

The simplest deformation that can be made to a sphere is squashing. However, squashed
spheres typically don’t admit Killing spinors. A rare exception is a particular squashed sphere,

H =
9

20

(
da⊗ da+

1

4
sin2(a)bx ⊗ bx +

1

20
(cx + cos(a)bx)⊗ (cx + cos(a)bx)

)
, (592)

bx = σx − Σx, cx = σx + Σx, (593)

σ1 = cos(ψ)dθ + sin(ψ) sin(θ)dϕ, σ2 = − sin(ψ)dθ + cos(ψ) sin(θ)dϕ,

σ3 = dψ + cos(θ)dϕ (594)

and Σx are defined identically to σx, but with (ψ, θ, ϕ) replaced by some analogous coordinates,
(ψ′, θ′, ϕ′). The squashing comes from the factor of 1/20 in equation 592. If that 1/20 were
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also 1/4, then H would be the usual round sphere.

From [53], H satisfies R
(H)
AB = 6δAB and admits exactly one linearly independent Killing spinor.

Choose γµ as per equation 554. Then, solutions to D
(H)
A εH = 1

2
γAεH are constructed as per

equation 559 and theorem 4.14 is applicable.
From [51], the only solution to D̂Aε̂

(−)
H = −1

2
γ̂Aε̂

(−)
H is ε̂

(−)
H = 0.

I will choose the same γ̂A as [53]. Then, by [53], the only solution (up to constant scaling) to

D̂Aε̂
(+)
H = 1

2
γ̂Aε̂

(+)
H is

ε̂
(+)
H =

[
0 1 −1 0 0 0 0 0

]T
. (595)

Theorem 4.18. For spacetimes asymptotically Kottler with the cross-section in equation 592,
if the Einstein equation and dominant energy condition hold, then E ≥ 0.

Proof. The proof is simply applying theorem 4.14 with ε̂
(−)
H = 0 and equation 595.

ε̂
(−)
H = 0 means I only need to evaluate ε̂

(+)†
H (p0I − ipAγ̂

A)ε̂
(+)
H for theorem 4.14.

ε̂
(+)†
H ε̂

(+)
H = 2 by inspection and by computer algebra, one finds ε̂

(+)†
H γ̂Aε̂

(+)
H = 0 for all A.

Thus, theorem 4.14 reduces to saying 0 ≤ Q(ε) = 2
∫
∂∞Σt

2p0d(H) = 8πE ⇐⇒ E ≥ 0. □

4.3.2 Lens spaces, L(p, 1)

Definition 4.19 (Lens space, L(p, 1)). View S3 as the level set,

{(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}. (596)

Then, the lens space, L(p, 1), is defined as the quotient of S3 by the Zp action,

(z1, z2) → (z1e
2πi/p, z2e

2πi/p). (597)

Lemma 4.20. When H = gS3, the most general solution to D̂
(H)
A ε̂

(+)
H = 1

2
γ̂Aε̂

(+)
H is

ε̂
(+)
H = eθγ̂

3/4eϕ1γ̂
2/2e−ϕ2γ̂

3γ̂4/2ε̂0, (598)

where ε̂0 is an arbitrary constant spinor, (θ, ϕ1, ϕ2) are defined by
x1
x2
x3
x4

 =


cos(θ/2) cos(ϕ1)
cos(θ/2) sin(ϕ1)
sin(θ/2) cos(ϕ2)
sin(θ/2) sin(ϕ2)

 (599)

and the vielbein is34

e2 = cos(θ/2)dϕ1, e
3 =

1

2
dθ and e4 = sin(θ/2)dϕ2 (600)

⇐⇒ e2 =
1

cos(θ/2)
∂ϕ1 , e3 = 2∂θ and e4 =

1

sin(θ/2)
∂ϕ2 . (601)

Furthermore, the most general solution to D̂
(H)
A ε̂

(−)
H = −1

2
γ̂Aε̂

(−)
H is

ε̂
(−)
H = e−θγ̂

3/4e−ϕ1γ̂
2/2e−ϕ2γ̂

3γ̂4/2ε̂0. (602)

34The ordering of eA is chosen so that ΛI
J in lemma 4.5 has determinant 1, not -1.
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Proof. To write the Killing spinor equation, I first need the connection coefficients35. For that,

de3 = 0, de2 = −1

2
sin(θ/2)dθ ∧ dϕ1 = − tan(θ/2)e3 ∧ e2

and de4 =
1

2
cos(θ/2)dθ ∧ dϕ2 = cot(θ/2)e3 ∧ e4. (603)

From deA = −ωAB ∧ eB, it follows that

ω32 = tan(θ/2)e2, ω34 = − cot(θ/2)e4 and ω24 = 0. (604)

∴ 0 = e α
A ∂αε̂

(+)
H − 1

4
ωBCAγ̂

BC ε̂
(+)
H − 1

2
γ̂Aε̂

(+)
H reduces to the three equations,

0 = 2∂θε̂
(+)
H − 0− 1

2
γ̂3ε̂

(+)
H , (605)

0 =
1

cos(θ/2)
∂ϕ1 ε̂

(+)
H − 1

2
tan(θ/2)γ̂3γ̂2ε̂

(+)
H − 1

2
γ̂2ε̂

(+)
H and (606)

0 =
1

sin(θ/2)
∂ϕ2 ε̂

(+)
H +

1

2
cot(θ/2)γ̂3γ̂4ε̂

(+)
H − 1

2
γ̂4ε̂

(+)
H . (607)

∴ ∂θε̂
(+)
H =

1

4
γ̂3ε̂

(+)
H , (608)

∂ϕ1 ε̂
(+)
H =

1

2
sin(θ/2)γ̂3γ̂2ε̂

(+)
H +

1

2
cos(θ/2)γ̂2ε̂

(+)
H and (609)

∂ϕ2 ε̂
(+)
H = −1

2
cos(θ/2)γ̂3γ̂4ε̂

(+)
H +

1

2
sin(θ/2)γ̂4ε̂

(+)
H . (610)

The first equation immediately integrates to give ε̂
(+)
H = eθγ̂

3/4ε̂θ, for a spinor, ε̂θ, that doesn’t
depend on θ.
Using eθγ̂

3
= cos(θ)I + sin(θ)γ̂3, the other two equations simplify as follows.

∂ϕ1 ε̂θ =
1

2
sin(θ/2)e−θγ̂

3/4γ̂3γ̂2eθγ̂
3/4ε̂θ +

1

2
cos(θ/2)e−θγ̂

3/4γ̂2eθγ̂
3/4ε̂θ (611)

=
1

2
sin(θ/2)e−θγ̂

3/2γ̂3γ̂2ε̂θ +
1

2
cos(θ/2)e−θγ̂

3/2γ̂2ε̂θ (612)

=
1

2
sin(θ/2)(cos(θ/2)I − sin(θ/2)γ̂3)γ̂3γ̂2ε̂θ

+
1

2
cos(θ/2)(cos(θ/2)I − sin(θ/2)γ̂3)γ̂2ε̂θ (613)

=
1

2
γ̂2ε̂θ. (614)

∂ϕ2 ε̂θ = −1

2
cos(θ/2)e−θγ̂

3/4γ̂3γ̂4eθγ̂
3/4ε̂θ +

1

2
sin(θ/2)e−θγ̂

3/4γ̂4eθγ̂
3/4ε̂θ (615)

= −1

2
cos(θ/2)e−θγ̂

3/2γ̂3γ̂4ε̂θ +
1

2
sin(θ/2)e−θγ̂

3/2γ̂4ε̂θ (616)

= −1

2
cos(θ/2)(cos(θ/2)I − sin(θ/2)γ̂3)γ̂3γ̂4ε̂θ

+
1

2
sin(θ/2)(cos(θ/2)I − sin(θ/2)γ̂3)γ̂4ε̂θ (617)

= −1

2
γ̂3γ̂4ε̂θ. (618)

35I will omit superscript (H)s in this lemma given everything is restricted to the cross-section.
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Since γ̂2 and γ̂3γ̂4 commute, these two equations are simultaneously solved by

ε̂θ = eϕ1γ̂
2/2e−ϕ2γ̂

3γ̂4/2ε̂0, (619)

for a constant spinor, ε̂0.
ε̂
(−)
H follows immediately because D̂

(H)
A ε̂

(−)
H = −1

2
γ̂Aε̂

(−)
H is identical to D̂

(H)
A ε̂

(+)
H = 1

2
γ̂Aε̂

(+)
H

except that γ̂A is replaced by −γ̂A everywhere. □

Corollary 4.20.1. Choose γ̂2 = iσ1, γ̂
3 = iσ2 and γ̂4 = iσ3. Then, the solutions to

D̂
(H)
A ε̂

(±)
H = ±1

2
γ̂Aε̂

(±)
H for L(p, 1) cross-sections are given by ε̂

(+)
H = 0 and

ε̂
(−)
H = e−iθσ2/4e−i(ϕ1−ϕ2)σ1/2ε̂0, (620)

for an arbitrary constant spinor, ε̂0.

Proof. The metric is locally identical to S3.
∴ Any solution will simply be a further restriction on the ε̂

(±)
H found in the main lemma. With

the chosen gamma matrices, those solutions are

ε̂
(±)
H = e±iθσ2/4e±i(ϕ1±ϕ2)σ1/2ε̂

(±)
0 . (621)

For a Killing spinor of S3 to remain a Killing spinor of L(p, 1), it must remain invariant under
the Zp action.

∴ ε̂
(±)
H → e±iθσ2/4e±i((ϕ1+2π/p)±(ϕ2+2π/p))σ1/2ε̂

(±)
0 . (622)

Choosing the − in ± means the 2π/p factors immediately cancel and the spinor is left invariant.

∴ Every ε̂
(−)
H of S3 is also a ε̂

(−)
H of L(p, 1).

Meanwhile, in the + case,

ε̂
(+)
H → eiθσ2/4ei(ϕ1+ϕ2+4π/p)σ1/2ε̂0 = eiθσ2/4ei(ϕ1+ϕ2)σ1/2e2πiσ1/pε̂0. (623)

Since eiθσ2/4ei(ϕ1+ϕ2)σ1/2 is invertible, ε̂
(+)
H remains invariant if and only if e2πiσ1/pε̂0 = ε̂0.

However, e2πiσ1/p = cos(2π/p)I + i sin(2π/p)σ1 has eigenvalues cos(2π/p)± i sin(2π/p), neither
of which is 1.
∴ e2πiσ1/pε̂0 = ε̂0 has no solution.
∴ The only ε̂

(+)
H on L(p, 1) is 0. □

A more foundational issue not addressed in the corollary is the question of spin structures on
L(p, 1). Luckily, it is shown in [54] that for odd p, there exists a unique spin structure, while
for even p, there exist two inequivalent spin structures.

Lemma 4.21. The Killing vectors on L(p, 1) are spanned by

k1 =
∂

∂ϕ1

+
∂

∂ϕ2

= 2
∂

∂ψ
, (624)

k2 =
∂

∂ϕ1

− ∂

∂ϕ2

= 2
∂

∂ϕ
, (625)

k3 = tan(θ/2) sin(ϕ1 − ϕ2)
∂

∂ϕ1

+ 2 cos(ϕ1 − ϕ2)
∂

∂θ
+ cot(θ/2) sin(ϕ1 − ϕ2)

∂

∂ϕ2

and (626)

k4 = tan(θ/2) cos(ϕ1 − ϕ2)
∂

∂ϕ1

− 2 sin(ϕ1 − ϕ2)
∂

∂θ
+ cot(θ/2) cos(ϕ1 − ϕ2)

∂

∂ϕ2

. (627)
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Proof. The Killing vectors of a sphere are known to be spanned by

vIJ =

(
x̂I
∂θα

∂xJ

∣∣∣∣
ρ=1

− x̂J
∂θα

∂xI

∣∣∣∣
ρ=1

)
∂α. (628)

From equations, 475 to 478,

∂ϕ1

∂x1

∣∣∣∣
ρ=1

= − sin(ϕ1)

cos(θ/2)
,
∂ϕ1

∂x2

∣∣∣∣
ρ=1

=
cos(ϕ1)

cos(θ/2)
,
∂ϕ1

∂x3

∣∣∣∣
ρ=1

=
∂ϕ1

∂x4

∣∣∣∣
ρ=1

= 0,

∂ϕ2

∂x1

∣∣∣∣
ρ=1

=
∂ϕ2

∂x2

∣∣∣∣
ρ=1

= 0,
∂ϕ2

∂x3

∣∣∣∣
ρ=1

= − sin(ϕ2)

sin(θ/2)
and

∂ϕ2

∂x4

∣∣∣∣
ρ=1

=
cos(ϕ2)

sin(θ/2)
. (629)

For ∂θ/∂xI ,

tan2(θ/2) =
x23 + x24
x21 + x22

=⇒ ∂

∂xI

(
x23 + x24
x21 + x22

)
= 2 tan(θ/2)

1

cos2(θ/2)

1

2

∂θ

∂xI
. (630)

∴
∂θ

∂xI
=

cos3(θ/2)

sin(θ/2)

∂

∂xI

(
x23 + x24
x21 + x22

)
. (631)

∴
∂θ

∂x1

∣∣∣∣
ρ=1

=
cos3(θ/2)

sin(θ/2)

(
− x23 + x24
(x21 + x22)

2

)
2x1 (632)

= −cos3(θ/2)

sin(θ/2)

sin2(θ/2)

cos4(θ/2)
2 cos(θ/2) cos(ϕ1) (633)

= −2 sin(θ/2) cos(ϕ1), (634)

∂θ

∂x3

∣∣∣∣
ρ=1

=
cos3(θ/2)

sin(θ/2)

2x3
x21 + x22

=
cos3(θ/2)

sin(θ/2)

2 sin(θ/2) cos(ϕ2)

cos2(θ/2)
= 2 cos(θ/2) cos(ϕ2), (635)

and similarly
∂θ

∂x2

∣∣∣∣
ρ=1

= −2 sin(θ/2) sin(ϕ1) &
∂θ

∂x4

∣∣∣∣
ρ=1

= 2 cos(θ/2) sin(ϕ2). (636)

Then, by computer algebra, one finds

v12 =
∂

∂ϕ1

, (637)

v13 = 2 cos(ϕ1) cos(ϕ2)
∂

∂θ
+ tan(θ/2) sin(ϕ1) cos(ϕ2)

∂

∂ϕ1

− cot(θ/2) cos(ϕ1) sin(ϕ2)
∂

∂ϕ2

, (638)

v14 = 2 cos(ϕ1) sin(ϕ2)
∂

∂θ
+ tan(θ/2) sin(ϕ1) sin(ϕ2)

∂

∂ϕ1

+ cot(θ/2) cos(ϕ1) cos(ϕ2)
∂

∂ϕ2

, (639)

v23 = 2 sin(ϕ1) cos(ϕ2)
∂

∂θ
− tan(θ/2) cos(ϕ1) cos(ϕ2)

∂

∂ϕ1

− cot(θ/2) sin(ϕ1) sin(ϕ2)
∂

∂ϕ2

, (640)

v24 = 2 sin(ϕ1) sin(ϕ2)
∂

∂θ
− tan(θ/2) cos(ϕ1) sin(ϕ2)

∂

∂ϕ1

+ cot(θ/2) sin(ϕ1) cos(ϕ2)
∂

∂ϕ2

, (641)

v34 =
∂

∂ϕ2

. (642)
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Then, change to a new basis of Killing vectors by

k1 = v12 + v34 =
∂

∂ϕ1

+
∂

∂ϕ2

= 2
∂

∂ψ
, (643)

k2 = v12 − v34 =
∂

∂ϕ1

− ∂

∂ϕ2

= 2
∂

∂ϕ
, (644)

k3 = v24 + v13 (645)

= tan(θ/2) sin(ϕ1 − ϕ2)
∂

∂ϕ1

+ 2 cos(ϕ1 − ϕ2)
∂

∂θ
+ cot(θ/2) sin(ϕ1 − ϕ2)

∂

∂ϕ2

, (646)

k4 = v14 − v23 (647)

= tan(θ/2) cos(ϕ1 − ϕ2)
∂

∂ϕ1

− 2 sin(ϕ1 − ϕ2)
∂

∂θ
+ cot(θ/2) cos(ϕ1 − ϕ2)

∂

∂ϕ2

, (648)

k5 = v13 − v24 (649)

= tan(θ/2) sin(ϕ1 + ϕ2)
∂

∂ϕ1

+ 2 cos(ϕ1 + ϕ2)
∂

∂θ
− cot(θ/2) sin(ϕ1 + ϕ2)

∂

∂ϕ2

and (650)

k6 = v14 + v23 (651)

= − tan(θ/2) cos(ϕ1 + ϕ2)
∂

∂ϕ1

+ 2 sin(ϕ1 + ϕ2)
∂

∂θ
+ cot(θ/2) cos(ϕ1 + ϕ2)

∂

∂ϕ2

. (652)

The metric on L(p, 1) is locally identical to the metric on the S3.
∴ The Killing vectors of L(p, 1) are a subspace of the Killing vectors of S3.
In this case, k1, k2, k3 and k4 are manifestly well-defined on the lens space and any linear
combination involving k5 and k6 is not well-defined on the lens space. □

Definition 4.22 (Angular momenta on L(p, 1)). For each Killing vector, kI , on L(p, 1), define
a “conserved angular momentum,”

JI =
1

4π

∫
∂Σt

f(4)0α k
α
I d(L(p, 1)). (653)

Not that these JIs are identical to the “conserved quantities” of definition 4.16.

Theorem 4.23 (L(p, 1) cross-section positive energy theorem). If the Einstein equation holds,
Tab satisfies the dominant energy condition and T 0µ decays faster than O(e−4r) near ∂∞Σt, then

E ≥
√
J2
2 + J2

3 + J2
4 . (654)

Note that J1 does not appear in the theorem.

Proof. The proof is merely substituting the ε̂
(±)
H in corollary 4.20.1 into theorem 4.14. Since

ε̂
(+)
H = 0, the integrand is simply

p0ε̂
(−)†
H ε̂

(−)
H − ipAε̂

(−)†
H γ̂Aε̂

(−)
H

= p0ε̂
†
0e

i(ϕ1−ϕ2)σ1/2eiθσ2/4e−iθσ2/4e−i(ϕ1−ϕ2)σ1/2ε̂0 + p2ε̂
†
0e

i(ϕ1−ϕ2)σ1/2eiθσ2/4σ1e
−iθσ2/4e−i(ϕ1−ϕ2)σ1/2ε̂0

+ p3ε̂
†
0e

i(ϕ1−ϕ2)σ1/2eiθσ2/4σ2e
−iθσ2/4e−i(ϕ1−ϕ2)σ1/2ε̂0

+ p4ε̂
†
0e

i(ϕ1−ϕ2)σ1/2eiθσ2/4σ3e
−iθσ2/4e−i(ϕ1−ϕ2)σ1/2ε̂0 (655)

= ε̂†0
(
p0I + (p2 cos(θ/2)− p4 sin(θ/2))σ1

+ (p2 sin(θ/2) sin(ϕ1 − ϕ2) + p3 cos(ϕ1 − ϕ2) + p4 cos(θ/2) sin(ϕ1 − ϕ2))σ2

+ (p2 sin(θ/2) cos(ϕ1 − ϕ2)− p3 sin(ϕ1 − ϕ2) + p4 cos(θ/2) cos(ϕ1 − ϕ2))σ3
)
ε̂0, (656)
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using computer algebra.
From definition 3.18 and the vielbein I’ve chosen in lemma 4.20,

f̃mn(0) f(4)mn = p0, f(4)03 =
1

2
p3, f(4)02 = cos(θ/2)p2 and f(4)04 = sin(θ/2)p4. (657)

Thus, equation 656 says

p0ε̂
(−)†
H ε̂

(−)
H − ipAε̂

(−)†
H γ̂Aε̂

(−)
H

= ε̂†0
(
(f(4)02 tan(θ/2) sin(ϕ1 − ϕ2) + 2f(4)03 cos(ϕ1 − ϕ2) + f(4)04 cot(θ/2) sin(ϕ1 − ϕ2))σ2

+ (f(4)02 tan(θ/2) cos(ϕ1 − ϕ2)− 2f(4)03 sin(ϕ1 − ϕ2) + f(4)04 cot(θ/2) cos(ϕ1 − ϕ2))σ3

+ f̃mn(0) f(4)mnI + (f(4)02 − f(4)04)σ1
)
ε̂0 (658)

= ε̂†0

(
f̃mn(0) f(4)mnI + f(4)0αk

α
2 σ1 + f(4)0αk

α
3 σ2 + f(4)0αk

α
4 σ3

)
ε̂0 by lemma 4.21. (659)

Then, from definition 4.22 and theorem 4.14,

0 ≤
∫
L(p,1)

(
p0ε̂

(−)†
H ε̂

(−)
H − ipAε̂

(−)†
H γ̂Aε̂

(−)
H

)
d(L(p, 1)) (660)

= 4πε̂†0 (EI + J2σ1 + J3σ2 + J4σ3) ε̂0. (661)

The eigenvalues of the matrix inbetween ε̂†0 and ε̂0 are

E ±
√
J2
2 + J2

3 + J2
4 (662)

and hence the theorem follows. □

4.3.3 The matrix reloaded - asymptotically AdS spaces once again

The simplest metric which can be written in the form of equation 496 is AdS itself. Hence, the
results of section 4.2 should be reproducible using theorem 4.13. In particular, the matrix in
equation 4.8 should appear via equation 4.13 as well. In this section, I’ll prove this is indeed
the case.

To deal with spheres, Sn−2, in arbitrary dimensions, the only practical coordinate system
is the “nested spheres.” In particular,

xI = ρ


cos(θ2)

sin(θ2) cos(θ3)
...

sin(θ2) · · · sin(θn−2) cos(θn−1)
sin(θ2) · · · sin(θn−2) sin(θn−1)

 and (663)

H = ρ2(dθ2 ⊗ dθ2 + sin2(θ2)dθ3 ⊗ dθ3 + · · ·+ sin2(θ2) · · · sin2(θn−2)dθn−1 ⊗ dθn−1). (664)

The natural vielbein to use on the unit sphere - e(s) as I’ve called it in section 4.2 - is thus

e(s)2 = dθ2, e
(s)3 = sin(θ2)dθ3, · · · , e(s)n−1 = sin(θ2) · · · sin(θn−2)dθn−1. (665)

In this frame, the most general solution to D
(H)
A εH = 1

2
γAεH on the unit sphere is [55]

εH = eθ2γ
2/2eθ3γ

3γ2/2 · · · eθn−1γn−1γn−2/2ε0 (666)
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for a constant spinor, ε0.

It is well known - and easily verifiable - that

(MIJ)KL = δIKδJL − δILδJK (667)

satisfies the o(n− 1) Lie algebra36,

[MIJ ,MKL] = δILMJK − δIKMJL − δJLMIK + δJKMIL. (668)

Likewise, it’s also a standard result that this Lie algebra is also satisfied by

SIJ = −1

4
[γI , γJ ] = −1

2
γIJ . (669)

By definition, a spinor is an object that transforms as

ε→ S[Λ]ε = e
1
2
ωIJS

IJ

ε = e−
1
4
ωIJγ

IJ

ε (670)

under a Lorentz transformation defined by Λ = e
1
2
ωIJM

IJ
.

The main objective of this subsection is to write the Λ from lemma 4.5 as a product of expo-
nentials, e

1
2
ωIJM

IJ
, deduce the corresponding S[Λ] and thereby prove the spinor in lemma 4.6

is equivalent to the spinor defined by theorem 4.12.

Lemma 4.24. The Lorentz transformation, Λ, is given by
cos(θ2) sin(θ2) cos(θ3) · · · sin(θ2) · · · sin(θn−2) cos(θn−1) sin(θ2) · · · sin(θn−2) sin(θn−1)
− sin(θ2) cos(θ2) cos(θ3) · · · cos(θ2) sin(θ3) · · · sin(θn−2) cos(θn−1) cos(θ2) sin(θ3) · · · sin(θn−1)

0 − sin(θ3) · · · cos(θ3) sin(θ4) · · · sin(θn−2) cos(θn−1) cos(θ3) sin(θ4) · · · sin(θn−1)
...

...
. . .

...
...

0 0 · · · − sin(θn−1) cos(θn−1)


(671)

= eθ2M12 · · · eθn−1Mn−2,n−1 . (672)

Proof. From lemma 4.5,

ΛIJ = δI1x̂J + δIAρ
∂θα

∂xJ
e(s)Aα . (673)

∴ The first row Λ can be read-off from equation 663.
∂θα

∂xJ
can be calculated from

x2α−1

x2α + · · ·+ x2n−1

= cot2(θα). (674)

∴
∂

∂xI
x2α−1

x2α + · · ·+ x2n−1

=
∂

∂xI
cot2(θα) = 2 cot(θα)

(
− 1

sin2(θα)

)
∂θα
∂xI

= −2 cos(θα)

sin3(θα)

∂θα
∂xI

. (675)

∴
∂θα
∂xI

= − sin3(θα)

2 cos(θα)

∂

∂xI
x2α−1

x2α + · · ·+ x2n−1

. (676)

36Really, I should consider o(1, n− 1), but because the local Lorentz transformation of lemma 4.5 is only
amongst the eI , it suffices to consider o(n− 1).
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∴ ∂θα
∂xI

= 0 when I < α− 1.
When I = α− 1,

∂θα
∂xI

= − sin3(θα)

2 cos(θα)

2xα−1

x2α + · · ·+ x2n−1

(677)

= −sin3(θα)

cos(θα)

ρ sin(θ2) · · · sin(θα−1) cos(θα)

ρ2 sin2(θ2) · · · sin2(θα)
(678)

= − 1

ρ sin(θ2) · · · sin(θα−1)
sin(θα). (679)

When I ≥ α (taking cos(θn) to mean 1 in one of the equations below),

∂θα
∂xI

= − sin3(θα)

2 cos(θα)

(
−

x2α−1

(x2α + · · ·+ x2n−1)
2

)
2xI (680)

=
sin3(θα)

cos(θα)

ρ2 sin2(θ2) · · · sin2(θα−1) cos
2(θα)

ρ4 sin4(θ2) · · · sin4(θα)
ρ sin(θ2) · · · sin(θI) cos(θI+1) (681)

=
1

ρ sin(θ2) · · · sin(θα−1)
cos(θα) sin(θα+1) · · · sin(θI) cos(θI+1). (682)

Since e(s)A = δAα sin(θ2) · · · sin(θα−1)dθ
α, I get the matrix in equation 671.

The exponential product in equation 672 then follows from

exp

(
θ

[
0 1
−1 0

])
=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
, (683)

MI,I+1, MI+1,I+2, · · · only acting non-trivially on rows & columns with index ≥ I and induction
(on n). □

Corollary 4.24.1. The εk from lemma 4.6 agrees with the εk from equations 517 and 666.

Proof. By definition, Λ = eθ2M12 · · · eθn−1Mn−2,n−1 means

S[Λ] = eθ2γ
2γ1/2 · · · eθn−1γn−1γn−2/2. (684)

Hence, the constant spinor, ε0, in lemma 4.6 goes to

S[Λ]ε0 = eθ2γ
2γ1/2 · · · eθn−1γn−1γn−2/2ε0 (685)

upon the change of frame.
ε0 is an arbitrary constant spinor, so I can redefine it as ε0 = 1√

2
(I − γ1)ε̃0 for an arbitrary

constant spinor, ε̃0.
Since I and γ1 both commute with γA, I can push I−γ1 past all the matrix exponentials until
eθ2γ

2γ1/2. Then,

eθ2γ
2γ1/2(I − γ1) = (cos(θ2/2)I − sin(θ2/2)γ

2γ1)(I − γ1) (686)

= (I − γ1) cos(θ2/2)I + γ1 sin(θ2/2)γ
2 − sin(θ2/2)γ

2 (687)

= (I − γ1)(cos(θ2/2)I − sin(θ2/2)γ
2) (688)

= (I − γ1)eθ2γ
2/2. (689)

∴ S[Λ]ε0 =
1√
2
(I − γ1)eθ2γ

2/2eθ3γ
3γ2/2 · · · eθn−1γn−1γn−2/2ε̃0 (690)

=
1√
2
(I − γ1)εH by equation 666. (691)
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e0 and e0 are unchanged, so the eiγ
0t/2 factor in lemma 4.6 is unchanged.

Next, consider the xIγI term. To view εk as a well-defined spinor, xI should be a vector. Hence,
upon the change of frame, xI should go to ΛIJx

J .
From equations 671 and 663, it follows by inspection that ΛIJx

J = ρ(1, 0, · · · , 0)T.
∴ xIγI goes to ργ

1 upon the vielbien transformation.
Putting all the different pieces together, I get

εk →
1√

2(1− ρ2)
(I − iργ1)eiγ

0t/2(I − γ1)εH . (692)

From lemma 4.4,

er =
1

2

(
2ρ

1− ρ2
+

√
1 +

4ρ2

(1− ρ2)2

)
=

(1 + ρ)2

2(1− ρ2)
. (693)

∴ 0 = ρ2(1 + 2er) + 2ρ+ 1− 2er. (694)

∴ ρ =
−2 +

√
4− 4(1 + 2er)(1− 2er)

2(1 + 2er)
=

−1 + 2r2

1 + 2er
=

1− 1
2
e−r

1 + 1
2
e−r

. (695)

∴ 1− ρ2 =
2e−r(

1 + 1
2
e−r
)2 and

ρ√
1− ρ2

=
1√
2
er/2

(
1− 1

2
e−r
)
. (696)

Substituting these relations back into 692, I get

εk →
1

2
er/2

(
1 +

1

2
e−r
)
eiγ

0t/2(I − γ1)εH − i

2
er/2

(
1− 1

2
e−r
)
γ1eiγ

0t/2(I − γ1)εH (697)

= er/2P−
1 eiγ

0t/2(I − γ1)εH +
1

2
e−r/2P+

1 eiγ
0t/2(I − γ1)εH (698)

= er/2P−
1

(
eiγ

0t/2 − ie−iγ0t/2
)
εH +

1

2
e−r/2P+

1

(
eiγ

0t/2 + ie−iγ0t/2
)
εH , (699)

which is exactly the result in theorem 4.12. □

5 BPS inequalities

In this section, I’ll apply theorem 3.19 to various supergravity theories by appropriately choos-
ing Aµ. In particular, Aµ will be chosen so that the resulting ∇µ generates the local transfor-
mation of the gravitino field, ψµ, in the supergravity, i.e.

δψµ = ∇µε, (700)

for transformation parameter, ε.
In a supergravity context, positive energy theorems typically go by the name BPS inequalities
and I will adopt this terminology.
The presence of Λ < 0 necessitates considering not just supergravity, but gauged supergravity.
I will focus on N = 2 theories in four and five dimensions in this work.
Both theories contain Maxwell fields. For convenience, if not physical significance, I’ll split the
Maxwell field as follows.

Definition 5.1 (Electric and magnetic components). Given a Maxwell field, Fab, the electric
and magnetic components will be defined as EI = FI0 and FIJ respectively. Likewise, any
current density, ja, will be split into electric charge and current as jµ ≡ (ρ, jI).
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Note that the split is with respect to the vielbein indices, not the coordinate indices.
It is also natural to consider electric charges in the presence of Maxwell fields.

Definition 5.2 (Electric charge). The electric charge, qe, is defined to be

qe =
1

4π

∫
∂∞Σt

⋆F. (701)

Corollary 5.2.1. When the metric is written in Fefferman-Graham form,

qe =
1

4π

∫
∂∞Σt

E1dA. (702)

Proof. Writing F out in a vielbein basis,

qe =
1

4π

∫
∂∞Σt

1

(n− 2)!
(⋆F )µ1···µn−2e

µ1 ∧ · · · ∧ eµn−2 (703)

=
1

4π

∫
∂∞Σt

1

2(n− 2)!
ενρµ1···µn−2F

νρeµ1 ∧ · · · ∧ eµn−2 . (704)

I’ve been working in a vielbein where e0 ⊥ Σt and e
1 ⊥ Σr. Hence, ∂∞Σt ⊥ e0, e1. Then,

qe =
1

4π

∫
∂∞Σt

1

2
εµν2···n−1F

µνe2 ∧ · · · ∧ en−1 (705)

=
1

4π

∫
∂∞Σt

ε012···n−1F
01e2 ∧ · · · ∧ en−1 (706)

=
1

4π

∫
∂∞Σt

F 01dA (707)

=
1

4π

∫
∂∞Σt

E1dA, (708)

as claimed. □

In 4D, it is also possible to have magnetic charge, an essentially topological effect due to the
inability to define a global one-form, aa, such that F = da. However, the choices of Aµ in the
subsequent sections will explicitly involve aµ as part of gauge covariant derivatives. On it’s own,
this may not be an issue. Changing from one patch to another imposes a transition function,
a → a+ dλ; likewise performing a phase transformation, ε → eiλε keeps the result consistent.
Unfortunately, such a (pointwise) phase transformation in inconsistent with my effective choice
of εk boundary conditions. Hence, I must restrict to electromagnetic fields sourced by a global
one-form, aa. Furthermore, even if this problem could be surmounted, I would still encounter
the more practical problem that FAB’s decay rate for magnetically charged solutions is too slow
for the requirements of section 3.1.

5.1 4D, N = 2, gauged supergravity

The bosonic sector of 4D, N = 2, gauged supergravity is described the action,

S =
1

16π

∫
M

(
R− 2Λ− FabF

ab
)
dV (g) + Sother

matter, (709)

where Fab = Daab − Dbaa, for some locally defined gauge field, aa. Note this is nothing but
Einstein-Maxwell theory with a cosmological constant. Strictly speaking, Sother

matter should be
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zero for the supergravity theory or for Einstein-Maxwell theory, but, for completeness, I’ve left
open the possibility of having further matter fields. I will however assume Sother

matter couples to
the Maxwell field at most through a term of the form,

∫
M
jaaadV (g), where aa is a (local)

gauge field.

The equations of motion in this theory are well known to be

Rab −
1

2
Rgab + Λgab = 8πTab = 2

(
F c
a Fbc −

1

4
gabF

cdFcd

)
+ 8πT other

ab , (710)

DbF
ba = −4πja, (711)

D[aFbc] = 0 (712)

and whatever equations the fields in Sother
matter solve.

It is known that in this supergravity theory, the gravitino, ψµ, transforms under local su-
persymmetry transformations as

δψµ = Dµε−
1

4
Fνργ

νργµε+ iaµε+
i

2
γµε, (713)

for a given spinor parameter, ε. Hence, I will choose

Aµ = −1

4
Fνργ

νργµ + iaµI =
1

2
EIγ

0γIγµ −
1

4
FIJγ

IJγµ + iaµI. (714)

Theorem 5.3 (4D, N = 2 supergravity BPS inequality). If the equations of motion hold,
T other
0µ , ρ decay faster than O(e−(n−1)r) near ∂∞Σt and T

other
00 ≥

√
T other
0I T otherI

0 + ρ2 and E1, aA
& F23 decay fast enough for the integrals below to be convergent, then theorem 3.19 implies

Q(ε) =
n− 1

2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x

− 2

∫
∂∞Σt

E1ε̄kεkdA− 2

∫
∂∞Σt

F23ε
†
kγ

1γ2γ3εkdA+ 2i

∫
∂∞Σt

aAε
†
kγ

1γAεkdA (715)

= 2

∫
Σt

(
(∇Iε)

†∇Iε+ 4πT 0µ
otherε

†γ0γµε− 4πρε†γ0ε
)
dV (716)

≥ 0 (717)

Note that when ρ = 0, the T other
0µ inequality is automatically satisfied if T other

ab satisfies the
dominant energy condition.

Proof. I’ll begin by validating the assumptions of definition 3.1 for the connection chosen in
equation 714. From equation 714,

AI =
1

2
EJγ

0γJγI −
1

4
FJKγ

JKγI + iaII. (718)

First, I’ll check

γIJAJ =
1

2
EKγ

IJγ0γKγJ −
1

4
FKLγ

IJγKLγJ + iaJγ
IJ (719)
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is hermitian. The 1st term simplifies as

1

2
EKγ

IJγ0γKγJ = −1

2
EKγ

IJγ0γJγ
K − EKγ

IJγ0δKJ (720)

=
1

2
EKγ

IJγJγ
0γK − EJγ

IJγ0 (721)

= −EJγIγ0γJ − EJγ
IJγ0 (722)

= EJγ
0(γIγJ − γIJ) (723)

= −EIγ0, (724)

while the 2nd term simplifies as

−1

4
FKLγ

IJγKLγJ = −1

4
FKLγ

IJ(γJγ
KL − 2δLJγ

K + 2δKJγ
L) (725)

=
1

2
FJKγ

IγJK − FJKγ
IJγK (726)

=
1

2
FJK(γ

IJK − δIJγK + δIKγJ − 2γIJK + 2δKJγI − 2δKIγJ) (727)

= −1

2
FJKγ

IJK . (728)

Substituting these back, I get

γIJAJ = −EIγ0 − 1

2
FJKγ

IJK + iaJγ
IJ . (729)

∴ (γIJAJ)
† = −EIγ0 +

1

2
FJKγ

KJI − iaIγ
JI = −EIγ0 − 1

2
FJKγ

IJK + iaJγ
IJ = γIJAJ . (730)

∴ γIJAJ is indeed hermitian.
Next, consider M for this example. By definition,

M = 4πT0µγ
0γµ + γIJDIAJ + i(γIAI + A†

Iγ
I)− A†

Iγ
IJAJ (731)

= 4πT other
0µ γ0γµ + F ν

0 Fµνγ
0γµ − 1

4
η0µF

νρFνργ
0γµ + γIJDIAJ

+ i(γIAI + A†
Iγ

I)− A†
Iγ

IJAJ . (732)

Consider this expression term by term.

F ν
0 Fµνγ

0γµ = F I
0 FµIγ

0γµ (733)

= −EI(−EI(γ0)2 + FJIγ
0γJ) (734)

= EIEII − FIJE
Jγ0γI . (735)

−1

4
η0µF

νρFνργ
0γµ =

1

4
F µνFµν(γ

0)2 = −1

2
EIEII +

1

4
F IJFIJI. (736)

γIJDIAJ = DI(γ
IJAJ) (737)

= DI

(
−EIγ0 − 1

2
FJKγ

IJK + iaJγ
IJ

)
by equation 729 (738)

= −DI(E
I)γ0 − 1

2
D[IFJK]γ

IJK + iD[IaJ ]γ
IJ (739)

= −4πργ0 − 0 +
i

2
FIJγ

IJ by the equations of motion. (740)
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γIAI =
1

2
EJγ

Iγ0γJγI −
1

4
FJKγ

IγJKγI + iaIγ
I (741)

= −1

2
EJγ

0γIγJγI −
1

4
FJK(γ

JKγI − 2δIJγK + 2δIKγJ)γI + iaIγ
I (742)

=
1

2
EJγ

0γJγIγI + EJγ
0δIJγI +

3

4
FIJγ

IJ − FIJγ
IγJ + iaIγ

I (743)

= −3

2
EIγ

0γI + EIγ
0γI +

3

4
FIJγ

IJ − FIJγ
IJ + iaIγ

I (744)

= −1

2
EIγ

0γI − 1

4
FIJγ

IJ + iaIγ
I . (745)

∴ γIAI + A†
Iγ

I = γIAI − (γIAI)
† (746)

= −1

2
EIγ

0γI − 1

4
FIJγ

IJ + iaIγ
I −

(
1

2
EIγ

Iγ0 − 1

4
FIJγ

JI + iaIγ
I

)
(747)

= −1

2
FIJγ

IJ . (748)

The most tedious term to simplify is

A†
Iγ

IJAJ =

(
1

2
EJγIγ

Jγ0 +
1

4
FJKγIγ

KJ − iaII

)(
−EIγ0 − 1

2
FLMγ

ILM + iaLγ
IL

)
(749)

= −1

2
EJE

IγIγ
Jγ0γ0 − 1

4
EJFLMγIγ

Jγ0γILM +
i

2
EJaLγIγ

Jγ0γIL

− 1

4
EIFJKγIγ

KJγ0 − 1

8
FJKFLMγIγ

KJγILM +
i

4
FJKaLγIγ

KJγIL

+ iaIE
Iγ0 +

i

2
aIFLMγ

ILM + aIaLγ
IL. (750)

Consider each set of similar terms in this expression individually.

−1

2
EJE

IγIγ
Jγ0γ0 = −1

2
EIEJγ

IγJ =
1

2
EIEII. (751)

− 1

4
EJFLMγIγ

Jγ0γILM − 1

4
EIFJKγIγ

KJγ0 (752)

=
1

4
EIFJK(−γLγIγ0γLJK − γIγKJγ0) (753)

=
1

4
EIFJKγ

0(γIγLγ
LJK + 2δILγ

LJK − γIγJK) (754)

=
1

4
EIFJKγ

0(−γIγJK + 2γIJK − γIγJK) (755)

=
1

2
EIFJKγ

0(−γIγJK + γIγJK + δIJγK − δIKγJ) (756)

= EIFIJγ
0γJ . (757)

i

2
EJaLγIγ

Jγ0γIL + iaIE
Iγ0 = − i

2
EJaKγ

JγIγ
IKγ0 − iEJaKδ

J
Iγ

IKγ0 + iaIE
Iγ0 (758)

= iEIaJ(γ
IγJ − γIJ)γ0 + iaIE

Iγ0 (759)

= −iEIaJδ
IJγ0 ++iaIE

Iγ0 (760)

= 0. (761)
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− 1

8
FJKFLMγIγ

KJγILM (762)

= −1

8
FJKFLM(γKJγI − 2δKIγ

J + 2δJIγ
K)γILM (763)

= −1

8
FIJFKLγ

IJγKL − 1

2
FIJFKLγ

JγIKL (764)

= −1

8
FIJFKL(γ

IJKL + δIKγJγL − δILγJγK − δJKγIγL + δJLγIγK + δIKδJLI − δILδJKI

+ 4γJIKL − 4δJIγKL + 4δJKγIL − 4δJLγIK) (765)

= 0− 1

8
FIJF

I
L γ

JγL +
1

8
FIJF

I
K γJγK +

1

8
FIJF

J
L γ

IγL − 1

8
FIJF

J
K γIγK − 1

8
F IJFIJI

+
1

8
F IJFJII − 0 + 0− 1

2
FIJF

J
L γ

IL +
1

2
FIJF

J
K γIK as γIJKL = 0 when n = 4 (766)

=
1

2
FIJF

IJI − 1

4
F IJFIJI − 0− 0 (767)

=
1

4
F IJFIJI. (768)

i

4
FJKaLγIγ

KJγIL +
i

2
aIFLMγ

ILM

=
i

4
aIFJK(−γLγJKγLI + 2γIJK) (769)

=
i

4
aIFJK(−γJKγLγLI + 2δJLγ

KγLI − 2δKLγ
JγLI + 2γIJK) (770)

=
i

2
aIFJK(γ

JKγI + 2γKγJI + γIJK) (771)

=
i

2
aIFJK(γ

JKI − δKIγJ + δIJγK + 2γKJI − 2δKJγI + 2δKIγJ + γIJK) (772)

= 0. (773)

aIaLγ
IL = 0. (774)

Substituting these results back up, I get

A†
Iγ

IJAJ =
1

2
EIEII + EIFIJγ

0γJ +
1

4
F IJFIJI. (775)

Substituting this expression, and the others above, into the earlier expression for M says

M = 4πT other
0µ γ0γµ + EIEII − FIJE

Jγ0γI − 1

2
EIEII +

1

4
F IJFIJI − 4πργ0 +

i

2
FIJγ

IJ

− i

2
FIJγ

IJ − 1

2
EIEII − EIFIJγ

0γJ − 1

4
F IJFIJI (776)

= 4πT other
0µ γ0γµ − 4πργ0 (777)

= 4π(T other
00 I + T other

0I γ0γI − ργ0). (778)

This matrix’s eigenvalues (e.g. found by computer algebra) are 4π(T other
00 ±

√
T other
0I T otherI

0 + ρ2).
Hence, M is non-negative definite by the condition I’ve assumed on T other

ab and ρ.
The ||M||0 decay condition assumed in definition 3.1 corresponds exactly to the decay conditions
I’m assuming for T other

0µ and ρ.
The ||AI ||0 decay condition assumed in definition 3.1 is merely required for the boundary
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integrals in equation 715 or theorem 3.19 to be finite and is stronger than the decay required
for convergence properties in section 3.1.
Finally, there is the assumption regarding γIAI = −Ã†

Iγ
I . This assumption is used only in

theorem 3.10, when proving G’s surjectivity.
From equation 748 and the computations leading to it, one can see that ÃI exists. In particular,
it is the same as AI , except FIJ and aI are replaced with −FIJ and −aI respectively.
These sign changes don’t affect decay rates or γIJAJ being hermitian.
∴ The assumptions of definition 3.1 hold.
Having established theorem 3.19 is valid in the present scenario, it remains only to simplify
the integrals there.
n−1
2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x is unchanged and the
∫
Σt
dV integral follows immediately

from equation 778. The other boundary integrals require finding γ1γAAA + A†
Aγ

Aγ1.

γ1γAAA = γ1γA
(
1

2
EJγ

0γJγA − 1

4
FJKγ

JKγA + iaAI

)
(779)

=
1

2
EJγ

0γ1γAγJγA − 1

4
FJKγ

1γAγJKγA + iaAγ
1γA. (780)

Consider the 1st two terms individually.

1

2
EJγ

0γ1γAγJγA = −1

2
EJγ

0γ1γJγAγA − EJγ
0γ1δAJγA (781)

= EJγ
0γ1γJ − EAγ

0γ1γA (782)

= E1γ
0γ1γ1 + EAγ

0γ1γA − EAγ
0γ1γA (783)

= −E1γ
0. (784)

−1

4
FJKγ

1γAγJKγA = −1

4
FJKγ

1(γJKγA − 2δJAγK + 2δKAγJ)γA (785)

=
1

2
FIJγ

1γIJ + FAIγ
1γIγA (786)

= F1Aγ
1γ1γA +

1

2
FABγ

1γAB + FA1γ
1γ1γA + FABγ

1γBγA (787)

= −1

2
FABγ

1γAB (788)

= −F23γ
1γ2γ3. (789)

Substituting these two expressions back,

γ1γAAA = −E1γ
0 − F23γ

1γ2γ3 + iaAγ
1γA. (790)

∴ γ1γAAA + A†
Aγ

Aγ1 = γ1γAAA + (γ1γAAA)
† (791)

= −E1γ
0 − F23γ

1γ2γ3 + iaAγ
1γA+

(−E1γ
0 − F23γ

1γ2γ3 + iaAγ
1γA)† (792)

= 2(−E1γ
0 − F23γ

1γ2γ3 + iaAγ
1γA). (793)

Finally, substituting this into theorem 3.19 completes the claimed result. □

Corollary 5.3.1. If f(0)0α = 0 and the extrinsic curvature, KIJ , of Σt is less than O(e
−r) near
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∂∞Σt, then

Q(ε) =
n− 1

2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x− 2

∫
∂∞Σt

E1ε̄kεkdA (794)

= 2

∫
Σt

(
(∇Iε)

†∇Iε+ 4πT 0µ
otherε

†γ0γµε− 4πρε†γ0ε
)
dV (795)

≥ 0, (796)

i.e. under the extra assumptions made, the magnetic and gauge field boundary integrals cancel.

Proof. Start by re-writing the magnetic integral as∫
∂∞Σt

F23ε
†
kγ

1γ2γ3εkdA =
1

2

∫
∂∞Σt

FABε
†
kγ

1γABεkdA (797)

=
1

2

∫
∂∞Σt

lIFJKε
†
kγ

IJKεkdA. (798)

I’ve assumed f(0)0α = 0. Hence, to leading order e µ′

I = δµ
′

ie
(h)i
I .

∴ FJK → e
(h)j
J e

(h)k
K Fjk = e

(h)j
J e

(h)k
K (∂jak − ∂kaj) → D

(h)
J aK −D

(h)
K aJ .

The decay conditions I’ve assumed mean only leading order contributions survive the integral.

∴
∫
∂∞Σt

F23ε
†
kγ

1γ2γ3εkdA =

∫
∂∞Σt

lID
(h)
J (aK)ε

†
kγ

IJKεkdA (799)

=

∫
∂∞Σt

lID
(h)
J (aKε

†
kγ

IJKεk)dA

−
∫
∂∞Σt

lIaK

(
D

(h)
J (εk)

†γIJKεk + ε†kγ
IJKD

(h)
J εk

)
dA. (800)

The covariant derivatives on Σt andM are related by D
(h)
I εk = DIεk+

1
2
KIJγ

Jγ0εk when acting
on spinors.
∴ The assumed KIJ decay implies D

(h)
I εk = DIεk to leading order.

∴ By the Killing spinor equation, DIεk = − i
2
γIεk to leading order.

∴ D
(h)
J (εk)

†γIJKεk + ε†kγ
IJKD

(h)
J εk →

(
− i

2
γJεk

)†

γIJKεk −
i

2
ε†kγ

IJKγJεk (801)

= − i

2
ε†kγJγ

IJKεk −
i

2
ε†kγ

IJKγJεk (802)

= −iε†kγ
IKεk. (803)

Meanwhile, for the other integral in equation 800, if h̃ is the metric on constant t and r surfaces,
then by the same logic as lemma 3.6,∫

∂∞Σt

lID
(h)
J (aKε

†
kγ

IJKεk)dA =

∫
∂∞Σt

D
(h̃)
J (lIaKε

†
kγ

IJKεk)dA (804)

= 0 by Stokes′ theorem. (805)

Thus, equation 800 reduces to∫
∂∞Σt

F23ε
†
kγ

1γ2γ3εkdA = 0 + i

∫
∂∞Σt

lIaKε
†
kγ

IKεkdA = i

∫
∂∞Σt

aAε
†
kγ

1γAεkdA. (806)

∴ The last two integrals in equation 715 precisely cancel. □
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5.1.1 Toroidal boundary

Consider again the toroidal boundary, f(0) = −dt⊗ dt+ δαβ dθ
α ⊗ dθβ.

Theorem 5.4 (4D, N = 2, toroidal boundary supergravity BPS inequality). If the equations
of motion hold, T 0µ

other decays faster than O(e−3r) near ∂∞Σt, T
other
00 ≥

√
T other
0I T otherI

0 + ρ2 and
(M, g)’s spin structure is compatible with having periodic spinors near ∂∞Σt then

E ≥
√

JAJA =
√

J2J2 + J3J3. (807)

Proof. Equation 328 applies once again as does the calculation in theorem 4.3 to show

n− 1

2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x = 8πε†0P
−
1

(
EI + JAγ0γA

)
P−
1 ε0. (808)

It remains to calculate the electromagnetic boundary terms in theorem 5.3.
The chosen f(0) suffices to apply corollary 5.3.1, so only the electric field integral remains.
However, equation 328, implies

ε̄kεk = erε†0P
−
1 γ

0P−
1 ε0 = erε†0γ

0P+
1 P

−
1 ε0 = 0. (809)

∴ The electric field integral vanishes and the situation reduces to theorem 4.3. □

5.1.2 Asymptotically AdS

Theorem 5.5 (4D, N = 2, asymptotically AdS supergravity BPS inequality). If the equations
of motion hold, T 0µ

other decays faster than O(e−3r) near ∂∞Σt, T
other
00 ≥

√
T other
0I T otherI

0 + ρ2,
AI =

1
2
EJγ

0γJγI − 1
4
FJKγ

JKγI + iaII decays37 faster than O(e−3r/2), E1 decays as O(e−2r), aA
decays as O(e−2r) and F23 decays38 as O(e−3r), then

EI − iPIγ
I +

i

2
JIJγ

0γIJ +KIγ
0γI − qeγ

0 (810)

is a non-negative definite matrix.

Proof. The proof is essentially just substituting the present data into theorem 5.3 and noting
that corollary 5.3.1 applies for the present boundary geometry.
The pM boundary integral in equation 715 is identical to what I’ve already analysed in theorem
4.8. Hence, I immediately get

n− 1

2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x

= 8πε†0e
−iγ0t/2

(
EI − iPIγ

I +
i

2
JIJγ

0γIJ +KIγ
0γI
)
eiγ

0t/2ε0. (811)

37This is a weaker decay condition than in definition 3.1. The decay there ensures the boundary integrals in
theorem 3.19 are convergent. However, I am dealing with that issue separately with specific decay conditions
on E1, F23 and aA. Hence, I can assume this weaker decay condition, which suffices for the analysis is section
3.1 - in particular, lemma 3.17.

38This decay is in fact automatically implied by the assumed decay on aA.
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Next, for the electromagnetic boundary integrals, first consider ε̄kεk. Since ε̄kεk is a Lorentz
scalar, I can evaluate it any frame. Thus, by lemma 4.6,

ε̄kεk =
1

1− ρ2
ε†0e

−iγ0t/2(I − ixIγ
I)γ0(I − ixJγ

J)eiγ
0t/2ε0 (812)

=
1

1− ρ2
ε†0e

−iγ0t/2γ0(I + ixIγ
I)(I − ixJγ

J)eiγ
0t/2ε0 (813)

=
1

1− ρ2
ε†0e

−iγ0t/2γ0(I + xIxJγ
IγJ)eiγ

0t/2ε0 (814)

=
1

1− ρ2
ε†0e

−iγ0t/2γ0(I − ρ2I)eiγ
0t/2ε0 (815)

= ε†0e
−iγ0t/2γ0eiγ

0t/2ε0. (816)

∴ The relevant integral in equation 715 is

−2

∫
∂∞Σt

E1ε̄kεkdA = −2

∫
∂∞Σt

E1ε
†
0e

−iγ0t/2γ0eiγ
0t/2ε0dA (817)

= −2ε†0e
−iγ0t/2

∫
∂∞Σt

E1dAγ
0eiγ

0t/2ε0 (818)

= −8πε†0e
−iγ0t/2qeγ

0eiγ
0t/2ε0. (819)

Hence, from corollary 5.3.1, I get

8πε†0e
−iγ0t/2

(
EI − iPIγ

I +
i

2
JIJγ

0γIJ +KIγ
0γI − qeγ

0

)
eiγ

0t/2ε0 (820)

is non-negative definite. By the same logic I used in section 4, I can conclude the matrix in
between ε†0e

−iγ0t/2 and eiγ
0t/2ε0 is non-negative definite. □

5.2 5D, N = 2, gauged supergravity

The bosonic sector of 5D, N = 2, gauged supergravity is described by the action,

S =
1

16π

∫
M

(
R− 2Λ− FabF

ab − 2

3
√
3
εabcdeFabFcdae

)
dV (g) + Sother

matter, (821)

where εabcde is the Levi-Civita tensor and Fab = Daab − Dbaa, for some locally defined gauge
field, aa. This theory could also be described as Einstein-Maxwell-Chern-Simons with cos-
mological constant39. Once again, Sother

matter should be zero for the supergravity theory, but for
completeness, I’ve left open the possibility of having further matter fields. I will again assume
Sother
matter couples to the Maxwell field at most through a term of the form,

∫
M
jaaadV (g).

The equations of motion in this theory are well known to be

Rab −
1

2
Rgab + Λgab = 8πTab = 2

(
F c
a Fbc −

1

4
gabF

cdFcd

)
+ 8πT other

ab , (822)

DbF
ba = −4πja − 1

2
√
3
εabcdeFbcFde, (823)

D[aFbc] = 0 (824)

39Alas, this is just as big a mouthful as saying “bosonic sector of 5D, N = 2, gauged supergravity.”
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and whatever equations the fields in Sother
matter solve.

It is known that in this supergravity theory, the gravitino, ψµ, transforms under local su-
persymmetry transformations as

δψµ = Dµε−
1

4
√
3
Fνργ

νργµε−
1

2
√
3
Fµνγ

νε+ i
√
3aµε+

i

2
γµε, (825)

for a given spinor parameter, ε. Hence, I will choose

Aµ = − 1

4
√
3
Fνργ

νργµ −
1

2
√
3
Fµνγ

ν + i
√
3aµI (826)

= − 1

2
√
3
EIγ

Iγ0γµ −
1

4
√
3
FIJγ

IJγµ −
1

2
√
3
Fµνγ

ν + i
√
3aµI (827)

This time, I get the following BPS inequality.

Theorem 5.6 (5D, N = 2, supergravity BPS inequality). If the equations of motion hold,
T 0µ
other decays faster than O(e−(n−1)r) near ∂∞Σt, T

other
00 ≥

√
T other
0I T otherI

0 + 3ρ2/4 and one uses
the 5D Clifford algebra representation where40 γ4 = γ0γ1γ2γ3, then theorem 3.19 implies

Q(ε) =
n− 1

2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x

−
√
3

∫
∂∞Σt

E1ε̄kεkdA−
√
3

2

∫
∂∞Σt

FABε
†
kγ

1γABεkdA

+ 2i
√
3

∫
∂∞Σt

aAε
†
kγ

1γAεkdA (828)

= 2

∫
Σt

(
(∇Iε)

†∇Iε+ 4πT 0µ
otherε

†γ0γµε− 2π
√
3ρε†γ0ε

)
dV (829)

≥ 0 (830)

Proof. Again, I start by checking the assumptions of definition 3.1 apply. From equation 827,

AI = − 1

2
√
3
EJγ

Jγ0γI −
1

4
√
3
FJKγ

JKγI −
1

2
√
3
EIγ

0 − 1

2
√
3
FIJγ

J + i
√
3aII. (831)

∴ γIJAJ = − 1

2
√
3
EKγ

IJγKγ0γJ −
1

4
√
3
FKLγ

IJγKLγJ −
1

2
√
3
EJγ

IJγ0

− 1

2
√
3
FJKγ

IJγK + i
√
3aJγ

IJ . (832)

The first term simplifies as

− 1

2
√
3
EKγ

IJγKγ0γJ =
1

2
√
3
EKγ

IJγKγJγ
0 (833)

= − 1

2
√
3
EKγ

IJγJγ
Kγ0 − 1√

3
EKγ

IJδKJγ
0 (834)

=

√
3

2
EJγ

IγJγ0 − 1√
3
EJγ

IJγ0 (835)

=

√
3

2
EJ(−δIJI + γIJ)γ0 − 1√

3
EJγ

IJγ0 (836)

= −
√
3

2
EIγ0 +

1

2
√
3
EJγ

IJγ0, (837)

40In 5D, there are two inequivalent, irreducible, Clifford algebra representations. They can be constructed
by taking γ0, γ1, γ2 & γ3 the same as in 4D and then defining γ4 to be γ0γ1γ2γ3 or −γ0γ1γ2γ3. In the present
context, I have the freedom to choose which representation I use.
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while the 2nd term simplifies as

− 1

4
√
3
FKLγ

IJγKLγJ = − 1

4
√
3
FKLγ

IJ(γJγ
KL − 2δLJγ

K + 2δKJγ
L) (838)

=

√
3

4
FJKγ

IγJK − 1√
3
FJKγ

IJγK . (839)

Substituting these back, I get

γIJAJ = −
√
3

2
EIγ0 +

√
3

4
FJKγ

IγJK −
√
3

2
FJKγ

IJγK + i
√
3aJγ

IJ . (840)

∴ (γIJAJ)
† = −

√
3

2
EIγ0 −

√
3

4
FJKγ

KJγI +

√
3

2
FJKγ

KγJI − i
√
3aJγ

JI (841)

= −
√
3

2
EIγ0 +

√
3

4
FJK(γ

IγJK − 2δKIγJ + 2δJIγK)

−
√
3

2
FJK(γ

IJγK − 2δKIγJ + 2δKJγI) + i
√
3aJγ

IJ (842)

= −
√
3

2
EIγ0 +

√
3

4
FJKγ

IγJK +
√
3F I

J γ
J

−
√
3

2
FJKγ

IJγK +
√
3F I

J γJ − 0 + i
√
3aJγ

IJ (843)

= −
√
3

2
EIγ0 +

√
3

4
FJKγ

IγJK −
√
3

2
FJKγ

IJγK + i
√
3aJγ

IJ (844)

= γIJAJ . (845)

Hence, γIJAJ is indeed hermitian.
Next, consider M for this theory. By definition,

M = 4πT0µγ
0γµ + γIJDIAJ +

3i

2
(γIAI + A†

Iγ
I)− A†

Iγ
IJAJ . (846)

Following the same analysis as in the proof of theorem 5.3, the energy-momentum term can be
expanded to get

M = 4πT other
0µ γ0γµ +

1

2
EIEII +

1

4
F IJFIJI − FIJE

Jγ0γI + γIJDIAJ

+
3i

2
(γIAI + A†

Iγ
I)− A†

Iγ
IJAJ . (847)

Individually consider each to the terms containing AI in this expression.

γIAI = − 1

2
√
3
EJγ

IγJγ0γI −
1

4
√
3
FJKγ

IγJKγI −
1

2
√
3
EIγ

Iγ0 − 1

2
√
3
FIJγ

IγJ

+ i
√
3aIγ

I . (848)

The 1st and 3rd terms combine to give

− 1

2
√
3
EI(γ

JγIγ0γJ + γIγ0) = − 1

2
√
3
EI(−γJγIγJ + γI)γ0 (849)

= − 1

2
√
3
EI(γ

JγJγ
I + 2γJδIJ + γI)γ0 (850)

=
1

2
√
3
EIγ

Iγ0, (851)
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while the 2nd term is

− 1

4
√
3
FJKγ

IγJKγI = − 1

4
√
3
FJKγ

I(γIγ
JK − 2δKIγ

J + 2δJIγ
K) (852)

= − 1

4
√
3
FJK(−4γJK − 2γKγJ + 2γJγK) (853)

= 0. (854)

That leaves

γIAI =
1

2
√
3
EIγ

Iγ0 − 1

2
√
3
FIJγ

IJ + i
√
3aIγ

I . (855)

∴ A†
Iγ

I = −(γIAI)
† (856)

= −
(
− 1

2
√
3
EIγ

0γI − 1

2
√
3
FIJγ

JI + i
√
3aIγ

I

)
(857)

= − 1

2
√
3
EIγ

Iγ0 − 1

2
√
3
FIJγ

IJ − i
√
3aIγ

I . (858)

∴
3i

2
(γIAI + A†

Iγ
I) = − i

√
3

2
FIJγ

IJ . (859)

From equation 840,

γIJDIAJ = DI

(
−
√
3

2
EIγ0 +

√
3

4
FJKγ

IγJK −
√
3

2
FJKγ

IJγK + i
√
3aJγ

IJ

)
(860)

= −
√
3

2
DI(E

I)γ0 +

√
3

4
DI(FJK)γ

IγJK −
√
3

2
DI(FJK)γ

IJγK

+ i
√
3DI(aJ)γ

IJ . (861)

The 2nd and 3rd term combine to
√
3

4
DI(FJK)γ

IγJK −
√
3

2
DI(FJK)γ

IJγK

=

√
3

4
DI(FJK)(γ

IJK − δIJγK + δIKγJ)−
√
3

2
DI(FJK)(γ

IJK − δKJγI + δKIγJ) (862)

=

√
3

4
D[IFJK]γ

IJK −
√
3

2
DI(FIJ)γ

J −
√
3

2
D[IFJK]γ

IJK + 0−
√
3

2
DI(FJI)γ

J (863)

= −
√
3

4
D[IFJK]γ

IJK (864)

= 0 by the equations of motion, (865)

while the 4th term is

i
√
3DI(aJ)γ

IJ =
i
√
3

2
(DIaJ −DJaI)γ

IJ =
i
√
3

2
FIJγ

IJ (866)

and the 1st term is

−
√
3

2
DI(E

I)γ0 = −2π
√
3ργ0 − 1

4
εIJKLFIJFKLγ

0 by the equations of motion. (867)

∴ γIJDIAJ = −2π
√
3ργ0 − 1

4
εIJKLFIJFKLγ

0 +
i
√
3

2
FIJγ

IJ . (868)
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The most tedious term to simplify is again A†
Iγ

IJAJ .

A†
Iγ

IJAJ =

(
− 1

2
√
3
EJγIγ

0γJ +
1

4
√
3
FJKγIγ

KJ − 1

2
√
3
EIγ

0 +
1

2
√
3
FIJγ

J − i
√
3aII

)
×

(
−
√
3

2
EIγ0 +

√
3

4
FLMγ

IγLM −
√
3

2
FLMγ

ILγM + i
√
3aLγ

IL

)
(869)

=
1

4
EJE

IγIγ
0γJγ0 − 1

8
EJFLMγIγ

0γJγIγLM +
1

4
EJFLMγIγ

0γJγILγM

− i

2
EJaLγIγ

0γJγIL − 1

8
EIFJKγIγ

KJγ0 +
1

16
FLMFJKγIγ

KJγIγLM

− 1

8
FLMFJKγIγ

KJγILγM +
i

4
aLFJKγIγ

KJγIL +
1

4
EIEI(γ

0)2 − 1

8
EIFLMγ

0γIγLM

+
1

4
EIFLMγ

0γILγM − i

2
EIaLγ

0γIL − 1

4
EIFIJγ

Jγ0 +
1

8
FLMFIJγ

JγIγLM

− 1

4
FLMFIJγ

JγILγM +
i

2
aLFIJγ

JγIL +
3i

2
aIE

Iγ0 − 3i

4
aIFLMγ

IγLM

+
3i

2
aIFLMγ

ILγM + 3aIaLγ
IL. (870)

Consider each set of terms with similar fields separately.

3aIaLγ
IL = 0. (871)

− i

2
EJaLγIγ

0γJγIL − i

2
EIaLγ

0γIL +
3i

2
aIE

Iγ0

=
i

2
EIaJγ

0(γKγ
IγKJ − γIJ + 3δIJI) (872)

=
i

2
EIaJγ

0(−γIγKγKJ − 2δIKγ
KJ − γIJ + 3δIJI) (873)

=
i

2
EIaJγ

0(3γIγJ − 2γIJ − γIJ + 3δIJI) (874)

=
i

2
EIaJγ

0(3(γIJ − δIJI)− 3γIJ + 3δIJI) (875)

= 0. (876)

1

4
EJE

IγIγ
0γJγ0 +

1

4
EIEI(γ

0)2 = −1

4
EIEJγ

IγJ +
1

4
EIEII (877)

=
1

2
EIEII. (878)

i

4
aLFJKγIγ

KJγIL +
i

2
aLFIJγ

JγIL − 3i

4
aIFLMγ

IγLM +
3i

2
aIFLMγ

ILγM

=
i

4
aIFJK(γLγ

KJγLI + 2γKγJI − 3γIγJK + 6γIJγK) (879)

=
i

4
aIFJK

(
(γKJγL − 2δKLγ

J + 2δJLγ
K)γLI + 2γKγJI − 3γIγJK + 6γIJγK

)
(880)

=
i

4
aIFJK

(
3γJKγI − 6γJγKI − 3γIγJK + 6γIJγK

)
(881)

=
3i

4
aIFJK

(
γJKI − δIKγJ + δIJγK − 2γJKI + 2δJKγI − 2δJIγK − γIJK + δIJγK − δIKγJ

+ 2γIJK − 2δKJγI + 2δKIγJ
)

(882)

= 0. (883)

80



1

16
FLMFJKγIγ

KJγIγLM − 1

8
FLMFJKγIγ

KJγILγM +
1

8
FLMFIJγ

JγIγLM − 1

4
FLMFIJγ

JγILγM

=
1

16
FIJFKL

(
− γMγ

KLγMγIJ + 2γMγ
KLγMIγJ − 2γIJγKL − 4γJγIKγL

)
(884)

=
1

16
FIJFKL

(
− (γKLγM − 2δKMγ

L + 2δLMγ
K)γMγIJ

+ 2(γKLγM − 2δKMγ
L + 2δLMγ

K)γMIγJ − 2γIJγKL − 4γJγIγKγL − 4γJδIKγL
)

(885)

=
1

16
FIJFKL

(
− γMγ

KLγMγIJ + 2γMγ
KLγMIγJ − 2γIJγKL − 4γJγIKγL

)
(886)

=
1

16
FIJFKL

(
4γKLγIJ + 4γLγKγIJ − 6γKLγIγJ − 8γLγKIγJ − 2γIJγKL + 4γIJγKL

− 4γJδIKγL
)

(887)

=
1

16
FIJFKL

(
− 4γIJγKL − 8γLγKγIγJ − 8γLδKIγJ − 4γJδIKγL

)
(888)

=
1

4
FIJFKLγ

IJγKL − 1

2
FIJF

I
K γ

KγJ − 1

4
FIJF

I
K γ

JγK (889)

=
1

4
FIJFKL

(
γIJKL + δIKγJγL − δILγJγK − δJKγIγL + δJLγIγK + δIKδJLI − δILδJKI

)
+

3

4
F IJFIJI (890)

=
1

4
FIJFKLγ

IJKL + FIJF
I
K γ

JγK +
1

2
F IJFIJI +

3

4
F IJFIJI (891)

=
1

4
FIJFJKε

IJKLγ1γ2γ3γ4 +
1

4
F IJFIJI (892)

= −1

4
FIJFJKε

IJKLγ0 +
1

4
F IJFIJI as I′ve chosen γ4 = γ0γ1γ2γ3. (893)

− 1

8
EJFLMγIγ

0γJγIγLM +
1

4
EJFLMγIγ

0γJγILγM − 1

8
EIFJKγIγ

KJγ0

− 1

8
EIFLMγ

0γIγLM +
1

4
EIFLMγ

0γILγM − 1

4
EIFIJγ

Jγ0 (894)

=
1

8
EIFJK

(
− γLγ

0γIγLγJK + 2γLγ
0γIγLJγK + γIγJKγ0 − γ0γIγJK + 2γ0γIJγK

− 2δIJγKγ0
)

(895)

=
1

8
EIFJKγ

0
(
γLγ

IγLγJK − 2γLγ
IγLJγK − γIγJK − γIγJK + 2γIJγK + 2δIJγK

)
(896)

=
1

8
EIFJKγ

0
(
− γIγLγ

LγJK − 2δILγ
LγJK + 2γIγLγ

LJγK + 4δILγ
LJγK − 2γIγJK

+ 2γIJγK + 2δIJγK
)

(897)

=
1

8
EIFJKγ

0
(
4γIγJK − 2γIγJK − 6γIγJγK + 4γIJγK − 2γIγJK + 2γIJγK + 2δIJγK

)
(898)

=
1

8
EIFJKγ

0
(
− 6γIγJK + 6γIJγK + 2δIJγK

)
(899)

=
1

8
EIFJKγ

0
(
− 6γIJK + 6δIJγK − 6δIKγJ + 6γIJK − 6δJKγI + 6δKIγJ + 2δIJγK

)
(900)

= EIFIJγ
0γJ . (901)

Substituting all these expressions back,

A†
Iγ

IJAJ =
1

2
EIEII + EIFIJγ

0γJ − 1

4
FIJFJKε

IJKLγ0 +
1

4
F IJFIJI. (902)
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That, along with the previous calculations, in turn implies

M = 4πT other
0µ γ0γµ +

1

2
EIEII +

1

4
F IJFIJI − FIJE

Jγ0γI − 2π
√
3ργ0 − 1

4
εIJKLFIJFKLγ

0

+
i
√
3

2
FIJγ

IJ − i
√
3

2
FIJγ

IJ − 1

2
EIEII − EIFIJγ

0γJ +
1

4
FIJFJKε

IJKLγ0

− 1

4
F IJFIJI (903)

= 4πT other
0µ γ0γµ − 2π

√
3ργ0 (904)

= 4πT other
00 I + 4πT other

0I γ0γI − 2π
√
3ργ0. (905)

It can be checked, e.g. by computer algebra, that M’s eigenvalues are

4π

(
T other
00 ±

√
T other
0I T otherI

0 +
3

4
ρ2

)
. (906)

Thus, the condition I’ve assumed on T other
ab ensures M is non-negative definite.

The ||M||0 decay condition assumed in definition 3.1 corresponds exactly to the decay conditions
I’m assuming for T other

0µ and ρ.
The ||AI ||0 decay condition assumed in definition 3.1 is merely required for the boundary
integrals in equation 828 or theorem 3.19 to be finite and is stronger than the decay required
for convergence properties in section 3.1.
Finally, there is the assumption regarding γIAI = −Ã†

Iγ
I . Just as in the proof of theorem 5.3,

equation 858 implies ÃI exists and it is identical to AI except FIJ → −FIJ and aI → −aI .
Just as in theorem 5.3, decay rates and γIJAJ being hermitian are unaffected by this change,
meaning the assumptions of definition 3.1 hold.
Having established theorem 3.19 is valid in the present scenario, it remains only to simplify
the integrals there.
n−1
2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x is unchanged and the
∫
Σt
dV integral follows immediately

from equation 905. The other boundary integrals require finding γ1γAAA + A†
Aγ

Aγ1.

γ1γAAA

= γ1γA
(
− 1

2
√
3
EIγ

Iγ0γA − 1

4
√
3
FIJγ

IJγA − 1

2
√
3
EAγ

0 − 1

2
√
3
FAIγ

I + i
√
3aAI

)
(907)

= − 1

2
√
3
E1γ

1γAγ1γ0γA − 1

2
√
3
EBγ

1γAγBγ0γA − 1

2
√
3
F1Bγ

1γAγ1γBγA

− 1

4
√
3
FBCγ

1γAγBCγA − 1

2
√
3
EAγ

1γAγ0 − 1

2
√
3
FA1γ

1γAγ1 − 1

2
√
3
FABγ

1γAγB

+ i
√
3aAγ

1γA (908)

Again, consider terms with the same fields separately.

− 1

2
√
3
E1γ

1γAγ1γ0γA − 1

2
√
3
EBγ

1γAγBγ0γA − 1

2
√
3
EAγ

1γAγ0

= −
√
3

2
E1γ

0 +
1

2
√
3
EBγ

1γ0γBγAγA +
1√
3
EBγ

1δABγ0γA − 1

2
√
3
EAγ

1γAγ0 (909)

= −
√
3

2
E1γ

0 −
√
3

2
EAγ

1γ0γA +
1√
3
EAγ

1γ0γA − 1

2
√
3
EAγ

1γAγ0 (910)

= −
√
3

2
E1γ

0. (911)
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− 1

2
√
3
F1Bγ

1γAγ1γBγA − 1

4
√
3
FBCγ

1γAγBCγA − 1

2
√
3
FA1γ

1γAγ1 − 1

2
√
3
FABγ

1γAγB

= − 1

2
√
3
F1Bγ

AγBγA − 1

4
√
3
FBCγ

1γA(γAγ
BC − 2δCAγ

B + 2δBAγ
C)− 1

2
√
3
FA1γ

A

− 1

2
√
3
FABγ

1γAB (912)

=
1

2
√
3
F1Bγ

BγAγA +
1√
3
F1Bδ

ABγA +

√
3

4
FABγ

1γAB − 1√
3
FABγ

1γAB − 1

2
√
3
FA1γ

A

− 1

2
√
3
FABγ

1γAB (913)

= −
√
3

2
F1Aγ

A +
1√
3
F1Aγ

A −
√
3

4
FABγ

1γAB − 1

2
√
3
FA1γ

A (914)

= −
√
3

4
FABγ

1γAB. (915)

Altogether, I get

γ1γAAA = −
√
3

2
E1γ

0 −
√
3

4
FABγ

1γAB + i
√
3aAγ

1γA. (916)

∴ γ1γAAA + A†
Aγ

1γA = −
√
3E1γ

0 −
√
3

2
FABγ

1γAB + 2i
√
3aAγ

1γA, (917)

which corresponds exactly to the integrand in the theorem. □

Corollary 5.6.1. If the extrinsic curvature, KIJ , of Σt is less than O(1) near ∂∞Σt and
f(0)0α = 0, then

Q(ε) =
n− 1

2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x−
√
3

∫
∂∞Σt

E1ε̄kεkdA (918)

= 2

∫
Σt

(
(∇Iε)

†∇Iε+ 4πT 0µ
otherε

†γ0γµε− 2π
√
3ρε†γ0ε

)
dV (919)

≥ 0, (920)

i.e. under the extra assumptions made, the magnetic and gauge field boundary integrals cancel.

Proof. The proof is identical to that of corollary 5.3.1, except that γJγ
JIK = −2γIK now,

instead of just −γIK . This factor of 2 exactly matches the extra factor of 2 between the
coefficients of the magnetic and gauge field boundary integrals compared to theorem 5.3. □

5.2.1 Toroidal boundary

Consider again the toroidal boundary, f(0) = −dt⊗ dt+ δαβ dθ
α ⊗ dθβ.

Theorem 5.7 (5D,N = 2, toroidal boundary supergravity BPS inequality). If the equations of
motion hold, T 0µ

other decays faster than O(e−(n−1)r) near ∂∞Σt, T
other
00 ≥

√
T other
0I T otherI

0 + 3ρ2/4
and (M, g)’s spin structure is compatible with having periodic spinors near ∂∞Σt, then

E ≥
√
JAJA. (921)

Proof. The proof is identical to theorem 5.4. □
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5.2.2 Asymptotically AdS

Theorem 5.8 (5D, N = 2, asymptotically AdS supergravity BPS inequality). If the equations
of motion hold, T 0µ

other decays faster than O(e−3r) near ∂∞Σt, T
other
00 ≥

√
T other
0I T otherI

0 + 3ρ2/4,
AI decays41 faster than O(e2r) and E1 decays as O(e−3r), then

EI − iPIγ
I +

i

2
JIJγ

0γIJ +KIγ
0γI −

√
3

2
qeγ

0 (922)

is a non-negative definite matrix.

Proof. As in 4D, corollary 5.6.1 is applicable for this boundary geometry. Both integrals in
corollary 5.6.1 are analysed identically to their analogues in theorem 5.5. □

This theorem generalises the result in [20], while also allowing for non-zero magnetic fields and
non-zero spacelike components to the gauge field.

5.2.3 Charged, equal angular momenta Myers-Perry solution example

As an example of the BPS inequalities proven in this section, I’ll apply theorem 5.8 to the 5D,
minimal, gauged supergravity analogue [56] of the example in section of 4.2.1. In the form
presented in [57, 58],

g = −R
2W

4b2
dt⊗ dt+

1

W
dR⊗ dR +

1

4
R2(dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ)

+ b2(dψ + cos(θ)dϕ+ fdt)⊗ (dψ + cos(θ)dϕ+ fdt) (923)

and a = −Q
√
3

2R2

(
dt− j

2
(dψ + cos(θ)dϕ)

)
, (924)

where W = 1 + 4b2 − 2P − 2Q

R2
+
Q2 + 2Pj2

R4
, (925)

f = − j

2b2

(
2P −Q

R2
− Q2

R4

)
, (926)

b2 =
1

4
R2

(
1 +

2j2P

R4
− j2Q2

R6

)
, (927)

P , Q & j are constants and the angles, ψ, θ & ϕ, are the same as in section 4.2.1.
Start with the Fefferman-Graham coordinate. 1

W
plays the same role here as f 2 in section

4.2.1.

W = 1 +R2

(
1 +

2j2P

R4
− j2Q2

R6

)
− 2P − 2Q

R2
+
Q2 + 2Pj2

R4
(928)

= 1 +R2 +
2((j2 − 1)P +Q)

R2
+

(1− j2)Q+ 2j2P

R4
. (929)

Comparing with section 4.2.1, the analogue of MZ in equation 435 is (1− j2)P −Q.
∴ From the work there, I immediately get

er → 1

2
(R +

√
1 +R2)

(
1− (1− j2)P −Q

4R4

)
and (930)

R2 → e2r

((
1− 1

4
e−2r

)2

+
1

2

(
(1− j2)P −Q

)
e−4r

)
. (931)

41This is a weaker decay condition than in definition 3.1. The decay there ensures the boundary integrals in
theorem 3.19 are convergent. However, I am dealing with that issue separately with a specific decay condition
on E1. Hence, I can assume this weaker decay condition, which suffices for the analysis is section 3.1 - in
particular, lemma 3.17.
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These expansions fully determine the other coefficients in the metric.

b2 → 1

4
e2r

((
1− 1

4
e−2r

)2

+
1

2

(
(1− j2)P −Q

)
e−4r

)(
1 + 2j2P e−4r − j2Q2e−6r

)
(932)

→ 1

4
e2r

((
1− 1

4
e−2r

)2

+
1

2

(
(1− j2)P −Q

)
e−4r + 2j2P e−4r

)
(933)

=
1

4
e2r

((
1− 1

4
e−2r

)2

+
1

2

(
(1 + 3j2)P −Q

)
e−4r

)
. (934)

R2W

4b2
=
R2

4

4

R2(1 + 2j2P/R4 − j2Q2/R6)

×
(
1 +R2 +

2((j2 − 1)P +Q)

R2
+

(1− j2)Q+ 2j2P

R4

)
(935)

→
(
1− 2j2P e−4r

)(
1 + e2r

((
1− 1

4
e−2r

)2

+
1

2

(
(1− j2)P −Q

)
e−4r

)

+ 2((j2 − 1)P +Q)e−2r

)
(936)

= e2r
(
1− 2j2P e−4r

)(((
1 +

1

4
e−2r

)2

+
1

2

(
(1− j2)P −Q

)
e−4r

)

+ 2((j2 − 1)P +Q)e−4r

)
(937)

→ e2r

((
1 +

1

4
e−2r

)2

+
1

2

(
3Q− (j2 + 3)P

)
e−4r

)
. (938)

b2f = −j
2

(
2P −Q

R2
− Q2

R4

)
→ −j(2P −Q)

2
e−2r. (939)

Substituting these into equation 923 gives

g = e2r

(
−
(
1 +

1

4
e−2r

)2

dt⊗ dt+
1

4

(
1− 1

4
e−2r

)2 (
dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ

+ (dψ + cos(θ)dϕ)⊗ (dψ + cos(θ)dϕ)
)

+ e−4r

(
− 1

2
(3Q− (J2 + 3)P )dt⊗ dt+

1

8
((1− j2)P −Q)(dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ)

+
1

8
((1 + 3j2)P −Q)(dψ + cos(θ)dϕ)⊗ (dψ + cos(θ)dϕ)

− 1

2
j(2P −Q)(dt⊗ (dψ + cos(θ)dϕ) + (dψ + cos(θ)dϕ)⊗ dt)

))
+ dr ⊗ dr. (940)
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∴ The metric is indeed asymptotically AdS in the sense of definition 2.3. Furthermore, it has

f(0) = −dt⊗ dt+
1

4
((dψ + cos(θ)dϕ)⊗ (dψ + cos(θ)dϕ) + dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ) (941)

= −dt⊗ dt+ gS3 and (942)

f(4) = −1

2
(3Q− (J2 + 3)P )dt⊗ dt+

1

8
((1− j2)P −Q)(dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ)

+
1

8
((1 + 3j2)P −Q)(dψ + cos(θ)dϕ)⊗ (dψ + cos(θ)dϕ)

− 1

2
j(2P −Q)(dt⊗ (dψ + cos(θ)dϕ) + (dψ + cos(θ)dϕ)⊗ dt). (943)

These are the same form as equations 460 and 461, so following the work there,

E =
1

4π

∫
S3

(
4(1 + cot2(θ))f(4)22 −

8 cos(θ)

sin2(θ)
f(4)24 + 4f(4)33 +

4

sin2(θ)
f(4)44

)
d(gS3) (944)

=
1

4π

∫
S3

(
1

2
(1 + cot2(θ))((1 + 3j2)P −Q)− cos(θ)

sin2(θ)
((1 + 3j2)P −Q) cos(θ)

+
1

2
((1− j2)P −Q) +

1

2 sin2(θ)
((1− j2)P −Q) sin2(θ)

+
1

2 sin2(θ)
((1 + 3j2)P −Q) cos2(θ)

)
d(gS3) (945)

=
(j2 + 3)P − 3Q

8π

∫
S3

d(gS3) (946)

=
π

4
((j2 + 3)P − 3Q), (947)

which matches the result calculated in [58] using the completely different methods of [59].
Similarly, from the work in section 4.2.1, I can also immediately read off KI = PI = 0 and

JIJ ≡
1
2
j(2P −Q)

Ma

πMa

2


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 =
πj(2P −Q)

4


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 . (948)

The only remaining quantity in equation 922 is the electric charge. For that,

F = da =
Q
√
3

R3
dR ∧

(
dt− j

2
(dψ + cos(θ)dϕ)

)
− jQ

√
3

4R2
sin(θ)dθ ∧ dϕ (949)

→ Q
√
3e−2rdr ∧

(
dt− j

2
(dψ + cos(θ)dϕ)

)
− jQ

√
3

4
e−2r sin(θ)dθ ∧ dϕ. (950)

∴ E1 = F10 = Q
√
3e−3r. (951)

∴ qe =
1

4π

∫
S3
∞

E1dA =
Q
√
3

4π

∫
S3
∞

d(gS3) =
πQ

√
3

2
. (952)

Substituting all these quantities into theorem 5.8 implies

π

4
((j2 + 3)P − 3Q)I +

iπj(2P −Q)

4
γ0
(
γ2γ1 + γ4γ3

)
− 3πQ

4
γ0 (953)
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is non-negative definite. Using a computer algebra software, it can be checked the eigenvalues
of this matrix are

π

4
((j2 + 3)P − 3Q) +

3πQ

4
,
π

4
((j2 + 3)P − 3Q)− 3πQ

4
+
πj(2P −Q)

2

and
π

4
((j2 + 3)P − 3Q)− 3πQ

4
− πj(2P −Q)

2
. (954)

Which of these is the lowest eigenvalue depends on the choices of j, P and Q. Nonetheless,
they all have to be non-negative. Therefore,

π

4
((j2 + 3)P − 3Q) +

3πQ

4
≥ 0 ⇐⇒ P ≥ 0, (955)

π

4
((j2 + 3)P − 3Q)− 3πQ

4
+
πj(2P −Q)

2
≥ 0 ⇐⇒ P ≥ 2Q

j + 1
and (956)

π

4
((j2 + 3)P − 3Q)− 3πQ

4
− πj(2P −Q)

2
≥ 0 ⇐⇒ P ≥ − 2Q

j − 1
. (957)

From [57], each inequality is saturated by a known supersymmetric solution. In particular,
P = 0 is the Klemm-Sabra solution [60] and P = ± 2Q

j±1
are the Gutowski-Reall solutions [61]

with their ϵ = ∓1 respectively42.

5.2.4 Lens spaces, L(p, 1)

Theorem 5.9 (5D, N = 2 supergravity BPS inequality for spacetimes asymptotically Kottler
with lens space cross-section). If the equations of motion hold, T 0µ

other decays faster than O(e
−3r)

near ∂∞Σt, T
other
00 ≥

√
T other
0I T otherI

0 + 3ρ2/4, AI decays43 faster than O(e2r) and E1 decays as
O(e−3r), then44

E ≥ −
√
3

2
qe +

√
J2
2 + J2

3 + J2
4 (958)

Proof. Corollary 5.6.1 applies again and the Killing spinor, εk, is constructed exactly as in
section 4.3.2.
∴ The first boundary integral is identical to what I had to evaluate earlier; the result is

n− 1

2
e−r
∫
∂∞Σt

pM ε̄kγ
Mεk

√
ι∗f(0) d

n−2x (959)

= 16πx† (EI + J2σ1 + J3σ2 + J4σ3)x (960)

for εk = er/2P−
1

(
eiγ

0t/2 − ie−iγ0t/2
)
εH +

1

2
e−r/2P+

1

(
eiγ

0t/2 + ie−iγ0t/2
)
εH , (961)

εH = eθγ
3/4eϕ1γ

2/2eϕ2γ
3γ4/2ε0 (962)

and ε0 = [x,−x]T. (963)

42The ϵ = ±1 solutions are not physically too dissimilar; it’s merely that a rotation direction is reversed.
43This is a weaker decay condition than in definition 3.1. The decay there ensures the boundary integrals in

theorem 3.19 are convergent. However, I am dealing with that issue separately with a specific decay condition
on E1. Hence, I can assume this weaker decay condition, which suffices for the analysis is section 3.1 - in
particular, lemma 3.17.

44Note that the meaning of positive and negative charge depends on the choice of positive orientation on the
lens space. I will be using the orientation defined by lemma 4.20.
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It remains to evaluate the 2nd integral in corollary 5.6.1. The spinor factor is

εkεk =
(
er/2P−

1 ε− + e−r/2P+
1 ε+

)†
γ0
(
er/2P−

1 ε− + e−r/2P+
1 ε+

)
(964)

= erε†−γ
0P+

1 P
−
1 ε− + ε†+γ

0P−
1 P

−
1 ε− + ε†−γ

0P+
1 P

+
1 ε+ + e−rε†+γ

0P−
1 P

+
1 ε+ (965)

= 0 + ε†+γ
0P−

1 ε− + ε†−γ
0P+

1 ε+ + 0 (966)

=
1

2
ε†H

(
e−iγ0t/2 − ieiγ

0t/2
)
γ0P−

1

(
eiγ

0t/2 − ie−iγ0t/2
)
εH

+
1

2
ε†H

(
e−iγ0t/2 + ieiγ

0t/2
)
γ0P+

1

(
eiγ

0t/2 + ie−iγ0t/2
)
εH (967)

=
(1− i)2

2
ε†H
(
cos(t/2)I + sin(t/2)γ0

)
γ0P−

1

(
cos(t/2)I − sin(t/2)γ0

)
εH

+
(1 + i)2

2
ε†H
(
cos(t/2)I − sin(t/2)γ0

)
γ0P+

1

(
cos(t/2)I + sin(t/2)γ0

)
εH . (968)

Using computer algebra, one finds the result is εkεk = −2x†x.

∴ −
√
3

∫
∂∞Σt

E1ε̄kεkdA = 2
√
3x†x

∫
∂∞Σt

E1dA = 8π
√
3qex

†x. (969)

∴ Corollary 5.6.1 reduces to

0 ≤ 16πx†

(
EI +

√
3

2
qeI + J2σ1 + J3σ2 + J4σ3

)
x. (970)

The eigenvalues of the matrix inbetween x† and x are

E +

√
3

2
qe ±

√
J2
2 + J2

3 + J2
4 (971)

and thus the result follows. □

There is a known soliton solution in this theory with L(p, 1) cross-section for p ≥ 3. From [62],

g = −f 2(dt+ ω)⊗ (dt+ ω) +
1

f
h and (972)

F =

√
3

2
d(f(dt+ ω))− 1√

3
G+ −

√
3

f
J for (973)

h =
1

V
dρ⊗ dρ+

ρ2

4
(dθ ⊗ dθ + sin2(θ)dϕ⊗ dϕ)

+
V ρ2

4
(dψ + cos(θ)dϕ)⊗ (dψ + cos(θ)dϕ), (974)

ω = ω3(dψ + cos(θ)dϕ), (975)

G+ =
f

2
(dω + ⋆hdω), (976)

J =
1

4
d(ρ2(dω + ⋆hdω)), (977)

f =
3ρ2

c0 − 1 + 3ρ2
, (978)

V =
1

ρ4
(ρ2 − ρ20)(a0 + a1ρ

2 + ρ4), (979)

ω3 =
1

36ρ4
(2(c0 − 1)c2 + (3(c0 − 1)2 + 9c2)ρ

2 + 18(c0 − 1)ρ4 + 18ρ6) (980)
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and all constants determined in terms of p by

c0 = a1 − ρ20, (981)

c2 = a0 − a1ρ
2
0, (982)

a1 = p− ρ20 −
a0
ρ20
, (983)

a0 =
ρ20

p+ 1
(2p2 − 4p+ 3 + (p− 8)ρ20) and (984)

ρ20 =
p− 2

54
(p2 + 14p− 5 + (p+ 1)

√
(p+ 1)(25 + p). (985)

From [63] (as can be verified using the methods in this work), this solution has

E = −π(2p+ 5)(p− 2)2

108p
, (986)

qe = −π(p− 2)2

6p
√
3

, (987)

J1 = −π(p− 2)3

108p
and J2 = J3 = J4 = 0. (988)

This solution was constructed as a supersymmetric solution as per the methods of [64]. Hence,
one would expect it to saturate the BPS inequality of theorem 5.9. However, it explicitly
violates theorem 5.9. It turns out theorem 5.9 is not applicable to this solution. While this
metric is locally constructed using methods from supersymmetry, there are global topological
problems. The issues are the same as those discussed in [48] for solutions with analogous
topological structure. In particular, when p is even, there are two inequivalent spin structures.
The soliton described requires spinors to be antiperiodic in ψ, while the ϵk used in theorem 5.9
requires spinors to be periodic in ψ. This situation is somewhat similar to the AdS soliton with
torioidal cross-section discussed earlier. Meanwhile, when p is odd, the soliton in fact admits
no spin structure at all. The best that can be done is instead a spinc structure. This soliton
satisfies the tantalising BPS identity,

E =

√
3

2
qe + 2J1. (989)

It remains to be seen whether there exists a more general inequality of this sort and whether
it can be proven using a variation of Witten’s technique where one leverages spinc structures
instead of the familiar spinor methods discussed in this work.
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A Conventions

I use nine different types of indices, as given below.

• a, b, c, · · · are abstract indices on the full spacetime.

• µ, ν, ρ, · · · are vielbein indices running 0, 1, · · · , n− 1.

• µ′, ν ′, ρ′, ... are coordinate indices running 0, 1, · · · , n− 1.

• M,N,P, · · · are vielbein indices running 0, 2, 3, · · · , n− 1.

• m,n, p, · · · are coordinate indices running 0, 2, 3, · · · , n− 1.

• A,B,C, · · · are vielbein indices running 2, 3, · · · , n− 1.

• α, β, γ, · · · are coordinate indices running 2, 3, · · · , n− 1.

• I, J,K, · · · are vielbein indices running 1, 2, · · · , n− 1.

• i, j, k, · · · are coordinate indices running 1, 2, · · · , n− 1.

I use a mostly pluses metric signature45.

The gamma matrices are chosen to be unitary and satisfying γµγν + γνγµ = −2ηµνI.

On occasion it may be convenient to choose a representation of the gamma matrices for prac-
tical calculations like finding eigenvalues, even though all equivalent representations will give
the same result. When n = 4, I’ll choose

γ0 =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 , γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , γ2 =

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0



and γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 . (990)

When n = 5, I’ll choose

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 =

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , γ2 =

0 0 0 i
0 0 i 0
0 i 0 0
i 0 0 0

 ,

γ3 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 and γ4 =


0 0 i 0
0 0 0 −i
i 0 0 0
0 −i 0 0

 . (991)

When n = 5, there are two inequivalent representations of the Clifford algebra; it will matter
in section 5.2 that I choose this particular equivalence class.

45This is the only sensible convention.
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The cosmological constant is always taken to be negative and parameterised as
Λ = − 1

2l2
(n − 1)(n − 2), for some length scale, l. It will then be convenient to work in l = 1

units; l can be restored in any equation on dimensional grounds.

I use the Riemann tensor convention where [Da, Db]V
c = Rc

dabV
d.

The following symbols have the meanings listed.

• M : The full spacetime

• g: The (Lorentzian) metric on M

• n: The dimension of M

• C∞
c : The space of compactly supported, smooth spinors on M

• H: The (metric space) completion of C∞
c under the metric corresponding to the inner

product defined by equation 86.

• ψ = ψ†γ0 for an spinor, ψ

• Da: The Levi-Civita connection of g

• D
(h)
i : The Levi-Civita connection of a metric, h

• ∇µψ = Dµψ + iαγµψ + Aµψ for any spinor, ψ.

• ∇µψ = Dµψ − iαψγµ + ψγ0A†
µγ

0 = (∇µψ)
†γ0 for any spinor, ψ.

• ωνρµ: Spin connection coefficients, with µ being the one-form index and ν & ρ being the
o(n− 1, 1) indices

• I: The identity matrix
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