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Abstract

I define a new notion of quasilocal mass applicable to generic, compact, two dimensional,
spacelike surfaces in spacetimes with negative cosmological constant. The definition is
spinorial and based on work by Penrose and Dougan & Mason in the A = 0 case. Further-
more, it is proven to be non-negative, have an appropriate limit at Z, have an appropriate
expression in linearised gravity, equal the Misner-Sharp mass in spherical symmetry and
equal zero for every generic surface in AdS. These notes are based on [I], but written in
a more informal (but more opiniated) and pedagogical style.
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1 Introduction

One of the triumphs of mathematical general relativity is the positive energy theorem - orig-
inally proven by Schoen & Yau [2] based on minimal surface techniques and soon after by
Witten [3] based on spinorial methods. Witten’s method was subsequently extended to prove
global mass-charge inequalities in 4D Einstein-Maxwell theory [4], 5D Einstein-Maxwell-Chern-
Simons theory [5], global positive energy theorems for spacetimes with AdS-type asymptotics
[0 [7, B, 9 10] and mass-charge inequalities in this context [11, 12} 13].

Meanwhile, one of the outstanding problems in mathematical general relativity is to find a
completely satisfactory definition of quasilocal mass, a notion of mass associated to a closed,
compact, spacelike, 2D hypersurface, usually taken to be diffeomorphic to a sphere - see [14]
for a review on the many attempts in the literature. At a very high level, Witten’s method
equates a combination of the ADM quantities [I5] to a non-negative volume integral over a
Cauchy surface. This raises the tantalising possibility of replacing the Cauchy surface with a
compact, spacelike, 3D, hypersurface and thereby finding a notion of quasilocal mass on the
hypersurface’s boundary. Furthermore, such a quasilocal mass would likely automatically sat-
isfy a notion of positivity.

This idea culminated in the spinorial definition of quasilocal mass by Dougan & Mason [10],
relying heavily on the Newman-Penrose (NP) [I7] and Geroch-Held-Penrose (GHP) [18] for-
malisms. Their definition proved to have a number of physically desirable properties [19] and
simplified Penrose’s twistorial attempt [20] at making Witten’s method quasiloca]E]. Dougan
& Mason’s quasilocal positive energy theorem was recently generalised to a quasilocal mass-
charge inequality by Reall [23] in much the same way Gibbons & Hull [4] extended Witten’s
original work. In parallel with the increasing sophistication of global positive energy theorems,
Reall speculates his results could be generalised to include a negative cosmological constant.
However, to find a quasilocal mass-charge inequality in spacetimes with negative cosmological
constant - let alone apply it to the third law of black hole mechanics like Reall - one must first
have a satisfactory notion of quasilocal mass for these spacetimes. While quasilocal masses do
exist for spacetimes with negative cosmological constant - for example the Hawking mass [24]
can be generalised [25] and [20] generalises the Brown-York and Kijowski masses [27, 28] - these
are not naturally spinorial. Thus, one seeks a generalisation of the Dougan-Mason quasilocal
mass accommodating a negative cosmological constant.

In this work I define such a generalisation, roughly stated as follows.

Definition 1.1 (Quasilocal mass - rough version). Given a generic, 2D, surface, S, within
a spacetime, (M, g), satisfying the Finstein equation with negative cosmological constant and
matter fields satisfying the dominant energy condition, make the following constructiond?.

Let {l,n,m,m} be a Newman-Penrose tetrad adapted to S.

Assume the null expansions of S satisfy 6, > 0, 6, < 0 and 6,0,, < %\

Let ® = [p,, €47 be a Dirac spinor satisfying m*V,® = 0 on S and let {®*} be a basis of
solutions, i.e. ® = c,®? for some constants, c4.

1See also [21] for a more recent spinorial definition of quasilocal mass and [22] for an attempt at using spinor
methods to study positivity of quasilocal masses that are not themselves spinorial.
2Tt is non-trivial to show that all these constructions are possible.



Then, define the matrices, Q4B and TAE, by

QAP — / Ly (B9 V DF — V([ @T)y < 0P) dA 1)
S
and T2 = (@HTC7 0P, (2)
[ A
where V,® = D,® + 1 _E%@ with D, = Levi — Civita connection (3)
and C' = charge conjugation matrix. (4)

Then, the quasilocal mass is defined to be

m(S) = Ton —tr(QT'QT1). (5)

My definition is based both on Dougan & Mason’s work, but also on Penrose’s twistorial
deﬁnitionﬂ. Like the Dougan-Mason mass, my definition applies to 2D surfaces, .S, which are
“generic” in a sense I'll make precise later. Also, like Penrose’s definition, but unlike Dougan &
Mason’s definition, my definition cannot decompose the mass into its constituents - e.g. energy
and linear momentum - except near Z. Most importantly though, a good quasilocal mass
should satisfy several properties of physical significance. Although no unanimously agreed list
existsﬂ I will show my definition satisfies the following properties.

e m(S) > 0.

e m(S) = 0 for every surface in AdS.

e m(S) coincides with the Misner-Sharp mass (including cosmological constant) for spher-
ically symmetric spacetimes.

e For asymptotically AdS spacetimes, m(S) agrees with a global notion of mass as S
approaches a sphere on Z.

e For gravity linearised about AdS, m(S) agrees with a reasonable notion of mass built
from the energy-momentum tensor, 7.

I begin in section [2| by setting up the problem and establishing various foundational identities
regarding spinors and the GHP formalism. This is supplemented in section [3| by analysis
required to show a Dirac-type operator admits a Green’s function as required for Witten’s
method. Finally, I'm ready to state my new definition of quasilocal mass is section [, The
first two properties in the list above are shown to follow somewhat immediately. Section
is devoted to studying examples with high symmetry - namely spherical symmmetry in
section [5.1] and toroidal symmetry in section [5.2] Section [f] then establishes the asymptotic
properties, while section[7]studies gravity linearised around AdS. Section[§then concludes with
a recapitulation and some speculation on future work. My conventions are listed in appendix
[Al Most saliently, I use conventions based on [30]. However, since the Penrose-Rindler [311 [32]
conventions have become somewhat ingrained in the general relativity community - despite
these conventions clashing with standard conventions used in work without spinors - I provide
a comparision between my conventions and the Penrose-Rindler conventions in appendix [A.1]
Finally, appendix[B] collates some identities I use frequently when manipulating two-component
spinors and NP coefficients.

3Tt appears there has been one previous attempt at including a negative cosmological constant in Penrose’s
work [29]. However, I don’t consider the mass in [29] to be quasilocal because it is only ever evaluated at Z.
My definition also differs in that no reference is made to twistors.

4Furthermore, most authors have a tendency of devising lists that exactly match the properties their defi-
nition satisfies.
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Figure 1: The set-up for defining quasilocal mass.

2 Set-up and the Lichnerowicz identity

Definition 2.1 (3,5, P,Q, X,Y). Let X be a three dimensional, compact manifold with bound-
ary, S, within a spacetime, (M, g). Define {P,Q, X,Y} to be a vielbein with X* and Y* tangent
to S, Q% an outward-pointing normal to S and P* a timelike, future-directed normal to .

See figure |1 for a visual depiction of definition . A quasilocal mass is then a number, m(S),
for each applicable S.

Definition 2.2 (Newman-Penrose tetrad). Having chosen {P,Q, X,Y} as described, define a
Newman-Penrose (NP) tetrad [17] by
1 1

a _ _— a a n® — — a_ 0% an ma:i a_iye
l_\/ﬁ(P +Q"), \/§(P Q") and \/§(X +1iY?). (6)

Equivalently, given an NP tetrad adapted to S and X, one can define

1 1 1
— — (" —n"), X*=—(m*+m"
v (1= n%), X* = = (m 4 )
and Y = m® —m 7
7 =) "
Lemma 2.3. The NP coefficients, p and p, are real. Furthermore, they are related to the
expansions along the null normals by 6, = —2p and 6, = 2.

P — (la+n> Qa:

Proof. For a spacelike, 2D surface with null normals, [* and n®, the generalised extrinsic cur-
vature is defined to be

K, = =% 8% (Da(le)n” + Da(ne)l®). (8)
However, K%, is known to be symmetric in the lower two indices.

oK mbme = 1KY, mPme <= B4 3% Dy(l)mPme = % 3. Da(l.)m m® 9)
— m*m°Dy(l,) = m*mDy(l.) (10)

= —p=—p. (11)
)

Similarly, n,K%, m’m¢ = nK%, m'me <= mimDy(n,) = m*mDy(n,) <= p=pa. (12



Thus p and p are indeed real.

In the NP formalism, g., = —l,np — naly + memy + Mgy,

.. The indiced metric on S is Bup = Gap + Loty + Naly = Moy + Mgy,

By definition, 6, = 3% D,l, and 0,, = % D,ny.

0= (mem® +mmP) Dol = —p— p = —2p and 6, = (m*m® + m*m®)Dyny = p+ i = 2p. O

Given a pair of null normals to S, it will be very natural to use the Geroch-Held-Penrose (GHP)
formalism [I§] in what follows. The primary construction underpinning the GHP formalism is
the spinor dyad.

Definition 2.4 (Spinor dyad, A, Ba,a(v),b(1))). When converted to two-components spinors,
write the NP tetrad in terms of a spinor dyad, {A, B}, as

lad = Aa/_ld and Naa = BaBd. (13)
with B*A, = V2. Subsequently, decompose any two-component spinor, ., as

Yo = a()An + b(Y)) B, (14)

— () = %Ba% and b(1)) = _%Aawa. (15)

Finally, in terms of the spinor dyad,

Mas = Baf_ld and mm = AaBd. (16)

Proof. These constructions are from [I8], but I'll explain in more detail why they’re possible.
By definition,

a A N SR A 1
loa =1 (Ua)ad = Ll + iz 10— l3:| (17)
sodet(log) = (192 — (1M — () — (P)* = 0. (18)
S laq 1s @ 2 X 2, non-zero, rank-1 matrix.
*. The columns of [,4 must be proportional to each other.
‘. du,, and v, such that
log = UgTs = [““fi “17}?] : (19)

Then, l,4 is hermitian = u19j, u20s € R and u vy = Usv;.

Ly = Uylvr|?/0s and thus i;/0, € R, say cy (if vy or vy is zero then l,q = AnAg holds
immediately with one of A; or As being zero).

Similarly, usvs = ﬂi”UQP/@i = uy/v; =c1 €R.

o = {01“’1'2 C“’“’?} . (20)

021)2?_]1 CQ‘U2|2

Now, cov90i = (c1v105) = ¢ = Co.

2 laa = cva0g for some two-component spinor, v,, and some real number, c.

log 70 = ¢ # 0. Then, [* is causal and future directed = ;; =1°+1® >0 = ¢ > 0.
Let A, = \/cv, to finally get loq = AqAq.

Similarly, 4B, such that n,, = Ba_Bd. B
co—l=1%, = —3%%n,q = —2A°AB, B, = —1|A°B,|? = |A°B,| = V2.

bt



In these definitions I still have the freedom to change A, or B, by a phase. I'll use this to fix
B*A, = V2.

Furthermore, it follows that A, and B, are pointwise linearly independent.

. A, and B, form a pointwise basis for two-component spinors.

.. Any two-component spinor, ¥, can be decomposed as ¢ = a(v)A, + b(¢)) B, for some
functions, a() and b(1)). These functions are determined by

A%t = A% (a() Aa + b($)) Ba) = 0 — V2b(1)) (21)
and By, = B* (a(¢)As + b(¥) B) = v2a(¢)) 4 0. (22)

Once [* and n* are chosen, the choice of m® is fixed uniquely up to an SO(2) rotation. This
freedom matches with the remaining phase freedom left after choosing B®A, = v/2.
.. Any choice/guess that works for m,g in terms of A, and B, is good enough.
Choose mas = BaAs. Then, m®m, = —im®myq = —21B*A*B, A, = 0 and
moim, = —%madmad = —%Ba/_ldl_gdAa = 1 as required. O
Definition 2.5 (Modified connection). When acting on any Dirac spinor, ¥, define the mod-
ified connection, V, by

V¥ =D,V +ikv,V and (23)

V¥ = D,V —ik¥ry, = (V1)1 (24)
where k = @/—1/\—2 and D, is the Levi-Civita connection.
Definition 2.6 (E®(V), E®(W,,¥,)). For a Dirac spinor, ¥, let

E®(U) = UV U + c.c = Uy**V U — V, (1)U, (25)
Similarly, define E®(¥y, Uy) by
Eab(\yl, \I/2> = ﬁl’yabcvc\pg — vc(ﬁl)’yabc‘yg. (26)

E®() is the Hodge dual of what is usually called the Witten-Nester 2-form [33].
Theorem 2.7 (Lichnerowicz identity).
P,Dy(E" (D)) =2 (V(0)'V'U — 4xTW, ¥ — (' V,0) 'V, 0) . (27)

A variant of the Lichnerowicz identity is always the key result underpinning any Witten-style
positive energy theorem. Note the RHS can be written in a more covariant looking way by
replacing T with —P,T" and replacing all V; with h® V,, where hy, = gap + PuBP.

Proof.
Dy E" ()
= Dy (U7"°V, U — V. (7)7"V) (28)
= Dy (V)Y W + Uy Dy(VU) — Dy(V W)U — V. (1)7% Dy W (29)
= V()" VU + ik Uy VU + Un" Dy (VW) — Dy(V U )y "W — Vo (V)4 V, ¥
+ ik Vo (V)7 U (30)

= 2V, (U)"V U — 2ik U™V, U + Uy Dy (V U) — Dy(V W)y U — 2ikV, (U)W (31)
= 2V, (0)7**V U — 2ikWU~y™ Dy + 2k2 Wy U 4 U Dy DU + ik Wy, Dy W

— DyD (V)Y "W + ik Dy (W )y, W — 2ik Dy (V)W — 2k2 Wy (32)
= 2V, (V)7**V U — 2ikUy* Dy — 65T~V + WD, DU — 21k T~ D,

— DyD (0)y"* W — 2ik Dy (V)7** W — 21k Dy(V)y** ¥ — 652U ¥ (33)
= 2V, (0)7"*V U — 12K T~*U — Uy D, D,V — DD, (¥)y* . (34)



For the second derivative terms, one applies the standard Licherowicz identity. In particular,

1
Dy DU = §V“bc[Db, D ¥ by antisymmetry

1
— _ngebc,yabc,ydele
1 e aoc C a C
= —ng be (7 be  — 67[ [55 ]d] + 69 55[65 ) v
1 a C C
SRdebc (67[ b[ 5 P 67[“(51’ 5 ) U by the Bianchi identity
3 e [ab ] [ash <] :
= ZR be (7 0, — 67,0 d) U by antisymmetry
1
:ZRe (,yab 50 +”}/bc 5a _|_,yca 5b)

— ZRdebc (’Yaébeécd + ,ybdce 5ad + 705a65bd) i}

( Reb,)/abe + Raebc,ybce + Rec,ycae 4 R,Ya o Rab,yb o Rac,yc) ]

AMH»-MH

1 b Lo
—— R — v,
2(R 277 R)’Yb

Then, for the other second derivative term,

<7abcDch\I,>T — Dch(\Ij>T7076ba70 _ DbD (E) cba (]
5 DyD (W)™ = (v Dy D W) '°

o 1 Rab 1 abR /] f 0
= 9 277 Yo Y

= —— aw _ _p® Wny.
2<R 277 R) Vb

Substituting back,

— — 1 —
DyE" () = 2V, (0)**V U — 122Uy + (R“” — 57;@”1%) Uy, U

= 2V, (0)7**V U + 87T W, ¥ by the Einstein equation.

I'm working in a vielbein where P, = —d,o. Hence,

P,DyE" (V) = =2 (V,(V) 179"V 0 + 47T, )
=2 (V(¥)ly ”vap AT Wy, 0)
=2 (Vi (0) (v'v7 + 6" 1)V ;¥ — 4xT% T, 1)
=2(V(0)! VI\II (V'V )YV U — 4x T, 1)
which is the form of the Lichnerowicz identity I will need in this work.
Lemma 2.8. For any antisymmetric tensor, M,

P,D,M" = Dy(P,M"),

where D is the induced covariant derivative on 2.

(0+0+ 0+ Ry — 2R%~,)¥ by Bianchi identity and Ry, = Rpq

(35)
(36)
(37)
(38)

(39)



Proof. Let hg, be the induced metric on X, i.e. hey = gop + P Bp.

Observe that P,M" is invariant under projection, i.e. because of M’s antisymmetry,
he PyM® = 6 P,M + P*P.P,M% = P,M®.

.. The induced covariant derivative acts as

Dy(P,M") = he,h% D (P, M%) (55)
= h,D.(P,M") (56)
= h¢, D (P,)M" + h¢, P,D.M" (57)
= Ky M" + 6 P,D ,M" + P°P,P,D ,M" where K, = extrinsic curvature (58)
= P,D,M" by M®'s antisymmetry, (59)
which is the claimed result. O
Definition 2.9 (Q(V), Q(Vy, ¥s)). For a Dirac spinor, ¥, define Q(V) by
Q) - [ RoER @)Y, (60)
b
By lemma
Q) = [ PaEn(ua (61)
S
Meanwhile, by theorem
Q) =2 / (Vi(0)' VW — 47Ty, U — (' V1)V, 0) dV. (62)
b
Similarly, define Q(Vq, W) by
Q(Ty, Ty) = / P,Dy(E" (T, Uy))dV. (63)
b

Although Dirac spinors are more convenient on 3, the positive energy theorem associated to
the Dougan-Mason construction requires two-component spinors on S.

Lemma 2.10. If U = [¢,, X%]7, then

Q) =4 [ (b(w)3at0) +50)Fa(w) ~ a0 ~ a0Fb)
+ pla())* + ulb(¥)? + pla(o)l? + plb(x)?
+ V2 (a()b(x) + b)alx) — a(©)b() — b()alx) )dA, (64
where © and O are the edth and edth-bar operators defined in [18].
Proof. By definitions 2.2 and

Q) = [ PQuE" (WA (65)
_ % /S (Lo + 1) (I — ) E™(¥)d A (66)
= /5 Loy B (W)dA by E®s antisymmetry (67)
— i /S laaT 53 BP9 (W)dA. (68)



Finding F,44;(V) is a long, tedious calculation.
Eoi55(P) = (0a)ac(00) 55 B (T) (69)
= (0a)aa(03) 35 (WY VU — V (T)7*0) (70)

I'll evaluate the first term on the RHS and then just take the complex conjugate to get the
second term.

(aa)w(ab)ﬁﬁ-%““vc\p
= (0a)aa(00) 55 U7 (DeV + ik V) (71)
= (aa)ad(ab)ﬁﬂ-ﬁvabch\If — Qik(aa)ad(ab)m@y“b\l/ (72)
— 0 (olGP0) 5] [Dea
= (Ua)ad(0b>55 [_X'Ya —7%] |i(5.[a0.b~c])"y’y 0 " Dciz
. — - [(olach) 0 0 U
AT | R | (73)
= ~(00)aa (@) 55X (016°0%) s DeX” = (00)aa(00) 55005(61°0"59) 7 Do,
+ Zik(aa)ad(o-b)BBXv(O-[a&b])fyéwé + Qik(aa)ad(Ub)ﬂﬁ'%ﬁ<5-[ao-b]);y5>_<5 (74)
Consider this expression term by term.
From the identity,
(O-a)oé 3 (5'17)55(0-0)5& - nca(ab)ad - nbc(ga)ad - nab(ac>ad + igabcd(ad)ad7 (75)
B
it follows that
(U[a&bac]>ad = igabcd(ad)ad (76)
- (Ua)aﬁ'(&b)ﬂﬂ(ac)ﬁd - nca(ab)ad + T]bc(o-a)ad + nab(ac)ao’w (77)

S (Ua)ad(gb)ﬁﬁ'xv(a[ac}bad )WDCX&

= —(0a)aa () 5 <(0“)w5(5b)56(06)6& — 7 (0")y + 1" (0%) s + Uab(ac)w> X'Dex’ (78)
— (42246505 ()51 — 261835 (0o + 220003(0) 35 + 22003033 ) X DX (79)
= (—4eare55(0%) 85 — 26,6550 aa + 2807865(0°) 55 + 20p844(0°)5) X DX (80)
= —4e4XaDpsX" — 2X8DacX g + 2XaDgpXa + 26ape X Dys X (81)
= —4%58%XQD5;Y>_(5 —2XpDaaXp + 2XaDgpXea + 25a65a55765ﬁ5X6Dw>25 (82)
= 4(07,8%; - Wﬁag)xapmg — 2xDaa¥s + 2XaDgsXa

+2(07,8% — 8750°,)(748°; — 750° ) xs Dy Xs (83)

= 4XaDpaXg — 4XaDgsXa — 2XaDaaX s T 2XaDgsXe + 2XsDaaX s — 2XaDpaX
—2xpD . 5Xe + 2XaDgpXa (84)
= 2XaDpaXg — 2x8D 5 X0 (85)

The second term in equation [74]is handled similarly.

(50)*(04) 35(56)% = 16a(56) = MelG2)5 = Nab(5e)% — i€ apea(G7)5 (86)
= (6140004)** = —i€apea(6)** (87)
= (6a)*(00) 35(6)™ = 1ea68)° + 1el(G2)° + 0ab(50)*. (88)



= (0a)aa(00) 45105 (610" 6) 1 D,

= —(0w)aa) gy (647 (0")55(3°)7 — GV 406" + 06 7") By D, (89)
— (407,87, 2255 (5 — 267507, (0 + 2070075 (0) 55 + 220p245(5°) ) B3 Dt (90)
= _45ﬁawaD73¢w - QEBDaéﬂﬁ,B + ZEaDgﬁ'@/)a + 2605650'4,6@&177%% (91)
= —4gﬁa575EdD561/17 — ZEBDadwg + 2%'11755%: + 25a55d58755ﬁ5EﬂD55w7 (92)
= 4(5755% - 57«1565)EQD55¢7 - QJBDOCM»UB + 2@51%3@%
+2(87,8% — 0750%)(6740%; — 07,0°% )5 Dysy (93)
= 4EaDaﬁ'1/)ﬁ - 4@@}%3@% - 2E5Dad¢ﬁ + QEaDﬁgﬁba + 2EQD53@/)04 - QEaDaB¢/3
— 2¢3Dpatba + 295 Doastp (94)
= 204D 515 — 203 Dps - (95)
Finally, the last two terms of equation [74] simplify to
21k (00 )aa(06) 35X (01°6"), "5 + 2ik(00)aa(08) 55005 (50", X
= 1k(00)aa(00)55 ((0°),5(8) "X s = (0°),4(6°) X s + (67 (0755005 %'
(6" (0")5505X') (96)
— 4ik(5a75d5(55ﬂ655x7¢5 — 55755-565,155@)(7% + 5555355%5%&?}5 — 50655@55‘555%@,?)’(5) (97)
= 4ik (c45X08 — €gaXp%a + €80PaX g — EapsXa) (98)
= —dikeas(VaXs + V¥ sXa) + 4ikes5(Xats + Xp¥a) (99)
Putting it all together, equation [74] reduces to
(0a)ac(0) 55 YVl = 20 DgaX s — 2X3DopXa + 204D 5005 — 203 Dpatba
— dikeap (15X + ¥ sNa) + dikesg(Xaths + Xptha).  (100)

Then, adding the complex conjugate gives
Boass = Z(XaDBdfiB - XﬁDa/é)Ex + s Do ths — %Dﬁaiﬁa—ﬂL XaDopXs — X3DpaXa
+ YaDgathy — VsDosts) + 8ik( — ap(VaXs + ¥sXa) + ap(Yaxs + ¥sxa)). (101)
Thus, by definition the required integrand is
1P B, 154(0) = AYA*BPB°E, 45 (102)
= 24%A*B" B® (XaDgaXj — XsDapXa + UaDosths — 3 Dpatba + XaDagXs
~ XgDpaXa +YaDpathy — ¥ Do)
+8ikA*A* BB — cap(VaXs + ¥5Xa) + 45(YaXs + UsXa) (103)
= 4V2(b(x)B?0x ;5 + a(x) A% Xa + b(¥)) B?5ts + a(v)) A0tba + b(x) B%ox s
+a(x)A%xa + b(W) B 6 + a(y) A%,
£ 16v/2ik( — B)alx) — a(e)500) + b(waly) + a()b(v). (104)

All the derivative terms can be re-written in terms of the GHP 8 and 9 operators [1§]. In
particular, A, and B, are GHP type-(0, 1) and type-(0, -1) respectively by definition. Since

10



Yo (and likewise for x, etc.) is invariant under choice of spinor dyad, it must be that a(y))
and b(¢) are type-(0, -1) and type-(0, 1) respectively. For a type-(p,q) object, f,,, 0 and O
are defined to act as

E?fzo,q = 5_fp7q — DB fpq — qo:‘fp,q (105)
and 0f,q = 0 fpg — PO pg — 4B fpq- (106)

Consider the derivative terms one by one. It suffices to calculate half of them and take complex
conjugates for the other half (noting that a type-(p, ¢) object becomes a type-(q, p) object under
complex conjugation).

BPx5 = B (a(x)As + b(x)Bs) (107)
= V20a(x) 4+ a(x)B*A, + 0+ b(x) BB, (108)
= V2 (da(x) + Ba(x) + ub(x)) (109)
= V2 (da(x) + ub(x)) - (110)
A%y = A% (a(x)Aa + b(x)Bs) (111)
=0+ a(x)A% A, — V26b(x) + b(x) A% B, (112)
= —V/2(db(x) — ab(x) — pa(x)) (113)
= —V2 (3b(x) — pa(x)) (114)
BPoyps = B*S (a(v)) Ag + () By) (115)
= V26a(yh) + a()) B*0A, + 0 + b(1)) B8 By (116)
= V2 (6a(v) + Ba(eh) + ub(v)) (117)
= V2 (Ba(y) + pb(¥)) . (118)
A6, = A% (a(¥)) Aa + b(1)B) (119)
= 0+ a(1h)A%5 A, — V20b()) + b(y)) A0 B, (120)
= —V2(8b() — ab(y) — pa(v)) (121)
= —V2(0b(¢) — pa(v)). (122)

Substituting back, I get

1) = 8(b(x)(Ba(x) + Hb(x)) — a(x) (B0 — palx)) + b() (Ba(w) + ub())
— a(y)(3b(¥) — pa(¥)) + b(x)(Balx) + ub(x)) — a(x)(Bb(x) — pa(x))
+b(¥)(Ba(v) + pb(¥)) — a(e) (0b(v) — pa(¥))
+16V2ik (= b(v)alx) — a(¥)b(x) + b(w)al(x) + a(¥)b(x)) (123)

= 8(b(x)a(x) — a(x)db(x) + b(¥)da(v) — a(y)db(s)
+b(x)3a(x) — a(x)db(x) + b(v)da(v) — a(¥)Bb())
+16(ufoC)* + pla(x)|* + plb(¥)[* + pla(v)[?)
F16VEk( — Be)a() — a()b() + bty +a@)b(0).  (124)
The 0 and 0 operators were constructed by GHP [I8] such that integration by parts is valid

on S, e.g.

LM@NW@ﬁAz—AMMWMWMA (125)

Substituting equation into equation 68| and integrating by parts proves the lemma. O
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3 Elements of analysis

A key idea of Witten’s method is applying the Lichnerowicz identity with a spinor, ¥, solving
vIV ;¥ = 0 on X. This section is dedicated to proving this is always possible given appropriate
boundary conditions on S and given an appropriate functional space for W. My presentation
is heavily based on [34] 35| 36].

Definition 3.1 (C®). Let Cg° be the space of Dirac spinors, ¥ = [th,, X*]T, which are smooth
on ¥ and subject to the boundary conditions, a(v) = b(x) =0 on S.

Definition 3.2 ((:,-)cp). Assume the dominant energy condition holds on ¥ and the null
expansions on S satisfy 0; > 0, 0, < 0 & 0,0, < —8k%. Then, define an inner product by

(U, Wy)eee = / ((v[xlfl)va\pz + 47rT°aqfho%x112> dV — Q(¥y, U,). (126)
%

Proof. 1t much be checked that (-, '>C;;° is a well defined inner product. Conjugate symmetry
and linearity in the second argument are manifest, so only positive definiteness remains.

(U, ) oo = / (Vr9) 'V + 47T Uy, 0) AV — Q(). (127)
U el = a(¥) =b(x) =0on S. Then, by lemma [2.10}
Q) =4 [ (Wbw)F + pla(0 +V2(bIa00 ~Hw)a0)))aa (129

For any nowhere-vanishing, complex function, z, on S, I can re-write Q(¥) as

2

Q) =4 [ (Lolattwil + ol Zato)| +itvE(sp0) ™Y — i)™ ) Jaa (129

Let p' = pu/|2*, p = [2p, V' (¥)) = 2b(¥) and a'(x) = a(x)/z.
QW) =4 [S (WIV @)+ pla () +ikV2( () () = B ()@ (1) ) dA (130)
=4 [ (0 + VR WR + (7 + VD) OF ~EVE() + i (0F)ad (131
<4 [ (0 + VAW + (0 + VDl () 4 (132)

Choose z = v/p/p so that ' = p' = —\/up = —3/=0,0, < —kV/2.

SQ(Y) <0.

Next, consider T Ty, U = UH(TO] 4 Ty, .

The eigenvalues of T ~vyv; ar +4/TYTY | so Ty, is non-negative definite if and only if
T > /T

The dominant energy condition says —7% V? is future directed and causal for any future di-
rected, causal vector, V.

Choose Va = §%.

o —=T% = T% is future directed and causal.

ST >0 and 0> 7, TT? <= (T%)% > T%'TY | which is the condition above.

>This can be seen by supposing T%yoy;v = Av. Then, \2v = T T% v by the Clifford algebra. Both
+4/TTTY must be eigenvalues because if v is in one eigenspace, then yov is in the other eigenspace.
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o T gy, U > 0.

In summary, all three terms in equation are non-negative.

AV, W) > 0.

Fmally, suppose (WU, ¥) oo = 0.

Then, by equation [127] VI\II =0on ¥ and Q(V¥) = 0.

The boundary conditions already imply a(1)) = b(x ) = 0 on S. Equation then implies
a(x) = b(y) =0 on S too.

V¥ =0onS.

Choose an arbitrary point, p € 3, and a smooth curve from any point on S to p. Let ¢! be the
tangent to the curve.

Then, 'V ;¥ = 0 along the curve and ¥ = 0 at the initial point.

Since !V ;¥ = 0 is just a linear, homogeneous, 1st order ODE along the curve and W is smooth,
initial value problems will have unique solution.

Since U = 0 is manifestly a solution for #!V;¥ = 0 and ¥|g = 0, this must be the only solution
along the curve.

Since p is arbitrary, this applies for any point on ¥, meaning ¥ = 0 everywhere on 3.

"+ ")cpe is positive definite. d

Definition 3.3 (G). Define a linear operator, G : C5° — L*, by G : U s IV 0.
Corollary 3.3.1. <\I’1,\If2>cgo = <G(\D1),G(\D2)>L2

Proof. Apply theorem 2.7, definition and the polarisation identity for relating norms and
inner products. O

Definition 3.4 (H). Define H to be the completion of Cy° under (-, -)cee.

Lemma 3.5. G extends to a continuous (i.e. bounded) linear operator from H to L* such that
(Wy, Wa)p = (G(T1), G(¥2)) 2

Proof. G is already defined for ¥ € Cp°. The points in H\C}* are equivalence classes of Cauchy

sequences.

Let {U4}%, be a Cauchy sequence in Cp° with limit in H\Cy°.

Observe that by corollary 3.3.1} [|G(W4) — G(¥p)|[12 = [[G(Va — Vp)||12 = |[¥a — Up]|cpe.
S AG(Y4) 1, is a Cauchy sequence in L2

.. Since L? is complete, limy o G(¥4) € L2

Extend the definition of G to H\C;° by defining G(lima_0o Vi) = limy 00 G(¥ 4).

This definition is independent of my original choice of Cauchy sequence, {¥4}%_,, because if

I'd chosen a different Cauchy sequence with the same “limit,” {¥’,}%, then {G(V4), G(¥)}

would be a Cauchy sequence in L? by a similar computation to above. Hence, they would have

the same limit in L2

Next, bserve that this definition implies corollary [3.3.1] extends to H. In particular, suppose

U = limayeo Uy and W' = limy_,o ¥, for Cauchy sequenced {1}, {15, € C.

Then,

(U, 0"y = jlm ma (U4, U)o by the definition of (-, )y (133)
—00 B—00
= lim E}lm (G(W4),G(VY))z2 by corollary 3.3.1 (134)
— 00
— < lim G(¥,), lim G(\II'B)> by (-,-),2s continuity (135)
A—o00 B—o0 L2
= (G(¥),G(V')) 2 by G's definition. (136)

6Strictly speaking, U and ¥’ are equivalence classes of Cauchy sequences, but I'm going to abuse notation
by denoting them as if they were ordinary spinors themselves.
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As an immediate consequence, I get

NG|z = ||}, (137)
which implies that G is a continuous/bounded linear operator. O
Theorem 3.6. G is a continuous, linear isomorphism between H and L?.

Most saliently, the theorem implies (v/V;)™!: L? — H exists.

Proof. Linearity is by construction and continuity has already been shown by lemma [3.5]
Next, suppose G(V¥) = 0. Then, by lemma |3.5]

0= IG(0) |12 = [ W]l — ¥ =0. (138)

.. GG is injective.

It remains to prove surjectivity.

Let 0 be an arbitrary element of L.
Define Fp : H — C by

Fy(¥) = (0, G(V)) 2. (139)
Fj is manifestly linear. It is also continuous/bounded because the Cauchy-Schwarz inequality
and lemma 3.5 imply [Fy(¥)| = [0, G(¥)) 2| < ||0]]12[|G(W)]]12 = [10]] 2] ¥ |}
.. By the Riesz representation theorem, 32 € H such that Fp(V) = (Z,V)4.
o Fy(0) = (G(Z),G(¥)) 12 by lemma [3.5
By equation [139] if follows that
(W,G(¥))2 =0VV € H, where W =0 — G(Z2). (140)

Consider a formal integration by parts on this equation.

0= /EWTG(\I/)dV (141)
- /Z Wiy D, — 3ikW)dV (142)
_ /E (= PTA™DyW — 3ikW ) AV (143)
_ /E (=P, Dy(WA™ W) + P, Dy(W)y00 — 3ikWHT) AV (144)

= — / P,QyW~*WdA — / (Dy(W)'y" ¥ — 3ikWT¥) AV by lemma (145)
S 3

= / lamy WA Wd A + / (v'D,W + 3ikW) " wav. (146)
S 3

14



Let W = [¢a, (%" and ¥ = [¢)4, X%]7 in terms of two-component spinors.

_ _ laz0]y B 0
Py =Ly [ =a] [0 G | [ .

— —%lanb((ga)ad(ﬁb)dﬁga¢ﬁ . (Ub)ad((}a)dﬁCaQ/JB + (5_a)doa(0b)a5q§d5<5

— (6")%(0") yy0aX”) (148)
= 2 (10l — laan®™ 5 + m 33’ — 10m 65 (149)

%(B By AP A )y — A As BP BY(*5 + BaBdAaABg5d>35
— AaAdBaBBédxﬁ) (150)
= V2( = a(Q)b(¥) = b(¢)a(y) + a(¢)b(x) + b(¢)a(x)). (151)

Since a(y)) = =0on S V¥ € H, the formal integration by parts says
0= \/' / —a(Q)b(y)) dA + / (v'D;W + Sik:W) wdV. (152)
b

As U € H D Cf° is arbitrary, it must be that W is a weak solution to v/ D;W + 3ikW = 0 on

¥ subject to the boundary conditions, b(¢) = a(¢) =0 on S.

It is then a technical mathematical problem to ascertain whether weak solutions lift to strong

solutions in this context. This question was studied in depth by [34, B5] and I will appeal

especially to their theorem 6.4 to conclude this is indeed the case.

Now, I can apply/establish a modified Lichnerowicz identity for W, as follows.

Let %GW = D, W —iky, W, i.e. k+— —k compared with the original connection, V.
VDWW + 3ikW =0 < ~IV,W =0

The sign of k£ was never essential in the proof of the Lichnerowicz identity; it merely mattered

that k% = —A/12.

.". From the proofs of theorem and lemma [2.10, it immediately follows that

0= [Ty T vy (153)
= / ((%,W)Tﬁfw - 47TT0“W%W> AV — Q(W), (154)

where QW) =2 [ (b(¢)3a(e) + H(6)Ta(6) — a(O9H(C) — a()THO
+ pla(@) + ulb(@)* + pla() + ulb(O)[*
— ikV2(a(0)b(C) + b(6)alC) — a(6)b(C) — B(@)al(()) )dA.  (155)
However, b(¢) = a(¢) = 0 on S from earlier.
Q) =2 [ (pla(@)F + WBOP = V3(a(0HO) ~a@h()) 44 (156)

As in the proof of definition [3.2] let p/ = ,u/]z|2, i |z|2p, "(¢) = a(¢)/z and b'(¢) = 2b(C).
Again, choose z = {/pu/p so that p/ = p' = —\/up = —2/=6,0,, < — kv/2.

Q) =2 [ (AP + HWOF - hVEE OO - (@) dA s
:2/5 <(p/+k\/§)‘a/(¢)|2+(Nl+k\/§)’b/(C)|2—kﬁ‘&/(¢)+ib/(C)|2> dA (158)
<. 150,
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Thus, combined with the dominant energy condition as used in the proof of definition [3.2]
every term on the RHS of equation is non-negative.

S ViIW =0 and Q(W) = 0.

The latter implies a(¢) = b(¢) = 0 on S by equation [L58]

2. W =0 on S since b(¢) = a(¢) =0 on S already.

In the proof of definition [3.2] I showed V;¥ = 0 on ¥ with ¥ = 0 on S implies ¥ = 0 on X.
By the same logic used there, it now follows that W = 0 on X.

L0=G(Z).

Since € L? is arbitrary, it must be that G is surjective. O

4 New quasilocal mass and its positivity

Definition 4.1 (®). Define ® = [¢q, £4]T to be a Dirac spinor satisfying m*V,® =0 on S.

Definition 4.2 (®4). Let {®4 = [p2, 49T} denote a basis for the space of solutions to
m*V,® =0 on S. Use A, B,... as indices on this spacd’]

Lemma 4.3. In the GHP formalism, m*V,® = 0 is equivalent to

0 = Ba(p) + pb(p) — ikV2a(€), (160)
0 =0b(&) — pa(§) — ikv2b(p), (161)
0 = 0b(p) — 7a(p) and (162)
0 = 0a(&) + Ab(E). (163)
Proof. In terms of two component spinors,
m*V,® = m*D,® + ikm®~,P (164)

- —maDagpa O Y76 0 (Ua)ad Pa

- _m“Daf_‘j‘} +ikm [(%)w 0 } L:a} (165)

_ [0pa + ikimaa &l

o0&t + ikm“dgoa} (166)

. —SQOQ -+ ik‘AaBdgd

= |og + ik;AaBd%] (167)

_ (000 — ik\/ﬁd(@Aa

gt — ik\/ﬁb(go)Bd} ' (168)

Contract the first equation with A®.
0= A° (&pa - ikﬁa(g)Aa)
= 4% (5 (a(p)Aa + b(g) Ba) — ik2a(€) Ao )

(169)
(170)
= a(@)A%0 Ay + 0 + b() A6 B, — V/25b(p) — 0 (171)
(172)
(173)

170

= V2Ga(p) + V28b(p) — V25b(y) 172
= V2 (5a(p) — Bb(p)) 173

"This implicitly assumes the solution space has countable dimension. As I'll explain later, this assumption
is acceptable because for generic S, I expect the solution space to be just four dimensional.
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which proves equation [162
Similarly, one finds the remaining three equations as follows.

0=B° (8% - ikﬁa(g)Aa) (174)
= B° (5 (al¢)Aa + b(¢) Ba) — ikv2a(§) A ) (175)
= a(@) B0 A, + V20a(p) + b(0)B*0 By + 0 — 2ika(€) (176)
(177)

(178)

= V2Ba(p) + v28a(p) + V2ub(p) — 2ika(€) 177
= V2 (Balp) + ub(p) - kv2a(€) ) 178
0= A, ( — ikV2b(p) B ) (179)
— A, <5(a( VA% 1+ b(€)BY) — ikv/2b(p) B ) (180)
= a(6)AabAY 4+ 04 b(&)Azd B + v/26b(€) — 2ikb(y) (181)
= —V/2pa (&) — V2ab(&) + V/26b(&) — 2ikb(y) (182)
= V2 (3b(&) - pal§) - ikV() ) (183)
0= B, (8 e 1k\/§b(§0)B°‘> (184)
— B, (5(&(5)Ad+b( )B%) — ikv/2b(p) B ) (185)

— a(6)Ba0 A — V/26a(€) + b(€)B4dB* + 0 — 0 (186)

— —V2aa(€) — V28a(€) — V2NH(€) (187)

= —V2 (3a(¢) + Ab(€)) . (188)

O

Definition 4.4 (Q42). Define the hermitian matriz, Q48, by
Q" =4 [ (paleale®) + e HER) = pal€)ale”) = (e 0t
+1EV2(b(EN)ale®) — ale™)b(E”) — a(EMb(”) + B(wA)d@B)))dA (189)

Theorem 4.5. If the dominant energy condition holds on ¥ and the null expansions on S
satisfy 0; > 0, 0, < 0 & 6,0, < —8k2, then QP is a non-negative definite matriz.

Proof. From lemma [2.10]
Q@) =1 [ (seate) + be)ale) - al©)3b(E) - al3H)
+pla(@)]* + plo()[* + pla(©)* + ulb()]®
+IRVE(a()b(E) + bp)als) — a(@h(E) —Hpa(©))dd. (190
From equations and [161]
b()Ba(p) = —ulb()* + ikv/2b(p)a(€) and (191)
a(£)0b(€) = pla()[® + ikv2a(€)b(p). (192)
S Q) = 4/5 (pla(w)l2 — ulb(@) [ = pla(©)[* + plb(€)[*

+ikv2(alp)b(€) — a()b(p) — alp)b(€) + d(é)E(sD)))dA‘ (193)
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Let Z = [¢a, (%7 be any element of H'(X) such that on S, a(¢) = a(p) and b(¢) = b(&).
Ze H'(X) = ~IV;Z e L}(D).

.. By theorem [3.6] 39’ € H such that 'V, ¥ = G(¥) = —'V;Z.

S U =V + Z satisfies v/V;¥ = 0.

.. By definition

Q(V) = /E (V(0)'V'T — 47T*Ty* ) dV > 0 (194)

where the first term is manifestly non-negative and the second term is non-negative by the
dominant energy condition (same reasoning as in the proof that definition is well-defined).
Furthermore, since every element, V' € H, has a(¢’) = b(x’) = 0 on S by construction, it
follows that ¥ has a(y) = a(p) and b(x) = b(&) on S.

.. By definition lemma [2.10] and the fact all the derivatives in lemma [2.10] are tangent to
S, Q(¥) can also be written as

Q) =4 [ (bw)dalie) + b)Balie) — a()THE) — alx)HE)
+ pla(@)? + lb(@) + pla(o)? + plb(©)
+V3(al)b(E) + b()a(x) — a(@)b(E) — b()a() )dA.  (195)

Then, from equations and [161],

Q) =4 [ (= b(w) (uble) + ikv2a(6)) = b6 (uble) — ik ()

—a(x) (pa(§) — ikv2b()) — a(x)(pa(é) + ikv2b(p))
+ pla(@)]* + ulb(¥)* + pla(x)|* + plb()?

+ikv2(alp)b(€) + b(w)a(x) — a(p)b(€) — 5(¢)@(X))>dz4 (196)

+b()alx) — al)b(E) — b¥)a(x)) )dA. (197)

— ulble) = b = pla(€) = a(0)?)dA + Q). (199)

As done previously, let u" = p/|2|%, o' = |2*p, d'(§) = a(§)/z, d'(x) = a(x)/z, V(p) = 2b(¢)
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and ' (1) = 2b(¢)). Again, choose z = /p/p so that y/ = p' = — /P = —3V/=0,0, < —kV2.
Q@) = 1 [ (= IVE((() 000 0) ~ (W) — (@(©) () — ()

— WV () = V@) = fla'(§) — d () )dA + Q(w) (200)
=4 [ (VBRI — a0 + () — W)

(VIR () ~ V(W) — (7 + VIRIA(E) — o (O )dA + Q) (201)
> 0. (202)

Since {®“} is a basis for the solution space to m*V,® = 0, I can let ® = c,®* for any
constants, cy4. B -

~alp) = caa(@?), bp) = cablp?), a(§) = caale”) and b(€) = cab(6?).

.. By definition [£.4] and equation [193]

0 < Q(P) = caQPcp. (203)
Since cy4 are arbitrary, it must be that Q4” is non-negative definite. O

While this theorem achieves a manifestly non-negative object, it’s not possible to extract a
mass from the full matrix, Q4Z, without some auxiliary constructions.

Definition 4.6 (T4P). Define the matriz, TAB, by
TAB _ ol ol — cogngD (201)
= V2 (ale™Mb(p") = al@™)b(?) + a(€®)b(e") —a(eh)b(e?)) . (205)
The notion of a surface, S, being “generic” can now finally be stated precisely.

Definition 4.7 (Generic - T4? form). The surface, S, is called generic if and only if TAP is
wnvertible.

Definition 4.8 (Generic - ®* form). The surface, S, is said to be generic if and only if the
solution space to m*V,® = 0 on S is four dimensional and the basis, {®*}4_,, is pointwise
linearly independent at least at one point of S.

I will show later that the ®4 version of generic implies the 747 version. In any case, I will
only use the property of S being generic once - albeit in a rather essential way in definition
m, where I rely on T~ existing. More importantly though, surfaces generic in name should
be generic in practice too. For the T4P form, it could be argued that since the set of singular
n X n matrices are measure zero in the set of all n X n matrices, this is indeed a valid notion of
generic. However, it’s not obvious the solution space is finite dimensional and this argument
doesn’t consider the possibility there is something specific to this situation precluding T745’s
invertibility. Furthermore, the examples considered in sections [5] and [0] either satisfy both no-
tions of generic or neither notion. Hence, it’s unclear whether m(S) constructed on a surface
satisfying the 74P form, but not the ®* form, of generic has physical meaning beyond simple
mathematical validity. Finally, from a practical point of view, one would like to know what
size of matrix to expect for 745 - and for that matter, Q4. As defined so far, they could be
of arbitrarily large size, maybe even infinitely large. Luckily, when S has spherical topology,
there are reasons to believe the ®4 form is also a valid notion of generic, implying T4 is only
a 4 x 4 matrix.
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It is known - e.g. from section 8.2.2 of [14] - that ¢ is an elliptic operator and the com-
pactness of S then guarantees § has finite dimensional kernel. Then, it is also known [I4] that
&’s index (dimension of kernel minus dimension of cokernel) is 4(1 — g) when S has genus, g.
The difference between m®V, - the operator I'm actually interested in - and 0 is ikn®y,, which
is a compact operator since S is compact and ikm®7y, is just a 4 X 4 matrix.

.. By Fredholm theory, index(m®*V,) = index(d) = 4(1 — g).

- If S is diffeomorphic to a sphere, then m*V,® = 0 must have at least four linearly indepen-
dent solutions.

In the spherical examples of sections [5] and [6] there happen to be precisely four linearly inde-
pendent solutions. Faced with a similar situation, Penrose then argues [20] as long as S is not
too far from canonical situations - such as the examples to be considered - there would still
remain precisely four linearly independent solutions.

At least for spherical S, this justifies the first half of the generic definition in ®* form. For
non-spherical S, the situation far less constrained and I cannot say whether either definition
of generic is actually realistic. In section [5.2]1 study examples with toroidal S. In one example
m*V,® = 0 will have only two linearly independent solutions and the corresponding T4Z will
just zero, while in the other example m*V,® = 0 won’t have any non-trivial solutions to begin
with. Hence both definitions of generic fail - however the wider implications are unclear.

The second half of definition is motivated by a possibility that occurs in the Dougan-Mason
definition, where one needs to solve the analogous equation, 6y, = 0. It turns out there exist
“exceptional” surfaces - e.g. a bifurcate Killing surface - where there are two solutions to
8o = 0 (the maximum expected or desired) which are linearly independent as functions de-
spite being pointwise linearly dependent at every point of S. The Dougan-Mason mass cannot
be defined on such surfaces because the analogue of T4% just becomes zero. However, based
on considerations of holomorphic spin bundles, Dougan and Mason argue such surfaces really
are indeed exceptional and not generic.

Similarly, I will insist {®4}%_, are pointwise linearly independent at least at one point of S
for S to be called generic in the ®* sense.

Lemma 4.9. T8 is antisymmetric and constant on S. Furthermore, the notion of generic in

definition [{.8 implies the notion of generic in definition [{.7

Proof. Antisymmetry follows directly from the definition.
Next, observe that

STA = § (Pl — e0iel) (206)
= e*5(0d)ph + P pldel — e¥8(E4)EY — eV ELOE] (207)
= e*%ikv2a(6) Al + e*Pikv/2a(€5) Ag

— e Yikv20(p*) Bstl — eELikV2b(¢") B, by equation [168 (208)
= 2ik (a(§M)b(0") — a(§”)b(e™) + bleM)a(s”) — b(e)a(¢™)) (209)
0. (210)

.. For each A and B, T4% is a holomorphic function on S.
. Since S is compact, Liouville’s theorem implies T4? is constant on S.
To prove invertibility, it’s easier to work in Dirac spinor notation. In the conventions I'm using,
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the charge conjugation matrix is

C= {ggﬁ 626-] . (211)
afB 0 B
S (@NTCTIRP = [pf E49] [80 %5} Eﬁg} (212)
= APl | fhde £ (213)
= T4B, (214)

Let v4 be a vector in the nullspace of T4E.
TABUB =0.
Let Z = va®*. Then, T"8vp =0 < (PNIC1Z =0 < wa(®HTC71Z = 0 for any
vector, w4.
Definition says there are four different ®4 and they are pointwise linearly independent at
least at one pomt say p, on S.
. Since Dirac spinors also have four components, {®4}%_, must form a pointwise basis at p.
. wa®? can be any Dirac spinor at p.
C1Z],=0.
. Z], = 0 since C~! is invertible.
~.v4 = 0 by the linear independence of {®4}4_, at p.
. TP has trivial nullspace. O

Lemma 4.10. For any non-negative definite, hermitian matriz, H, and antisymmetric matriz,
A, tr(HAHA) is real and tr(HAHA) <0.

Proof. In this proof I will write all indices downstairs and [ will write all summations explicitly.
Every hermitian matrix is orthogonally diagonalisable and has real eigenvalues.
~. 3 Vectors, {va)}, such that U(A) = dap and Hugay = Ay for some Ay € R.
H being non-negative definite 1mphes Aa > 0 VA.
Let Uap = v(p)a. Then, the orthogonal diagonalisation statement is that

UTHU = Z(UT)ACHCDUDB Z@(A)CHCD"U(B)D = (5AB>\B = DAB- (215)
C,D C,D
. By U’s unitarity,
Hyp = Z UacDep(UM)ps = Z V(c)A0cpADU(D)B = Z AcV(C)AV(C)B- (216)
C,.D C,D C

Then, the quantity of interest is

tl”(HAﬁA) = Z HABAgcﬁ(jD/IDA (217)
A,B,C\D
= Z AV(B)AU(E) BABCAFU(F) V() DADA (218)
A,B,C\D,E,F
= — Z )\EU AU BABCAF'U CU DAAD (219)
A,B,C,D,E,F
= — Z NeARU(E) BABCU(F) V(R AAADV(F)D (220)
A,B,C\D,E,F
E.F
which is manifestly real and non-positive. O
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Definition 4.11 (Quasilocal mass). Suppose the dominant energy condition holds on X, the
null expansions on S satisfy 0; > 0, 0,, < 0 & 0,0,, < —8k* and S is generic (either definition).
Then, construct Q42 and TAP by definitions 8 and define the quasilocal mass, m(S),
to be

m(S) = 16% —tr(QT1QT1). (222)

Theorem [4.5] lemma and lemma ensure m(S) is well-defined and manifestly non-
negative. Furthermore, m(S) is independent of the choice of basis, {®“}. For example, suppose
I perform a change of basis, &4 = BA,®%. Then, by definitions and ,

Q/AB — BACQCDBBD — Q/ _ BQBT and ( )

T/AB — BACTCDBBD — T/ _ BTBT (224)

~tr(Q (T QT ) = te(BQBTBTT'B'BQB"BTT'B ™) (225)

- wlorar), (25

Corollary 4.11.1. m(S) = 0 for every surface, S, in AdS that’s generic in the ®* sense.

Proof. For generic surfaces I have at most four linearly independent solutions to m*V,® = 0.
However, AdS already has a four dimensional space of Killing spinors, i.e. solutions to Ve, = 0.
.. Since V, e = 0 is a stronger condition, I can use the Killing spinors of AdS as {®4}4_,.

Then, ® = ¢, and Voe, =0 = E®(®) =0 = Q(®) =0 = m(S) = 0. O

There is a weak converse to this property which can be proved somewhat immediately.

Corollary 4.11.2. If Q42 = 0 and the S is generic in the ®* sense, then the spacetime is
mazimally symmetric on 3.

Proof. From the proof of theorem [4.5] especially equation Q4% =0 = 3 4 linearly
independent spinor, U4, such that V;¥4 = 0.
First, V¥ = 0 implies the ’integrability condition,’

0= [V, V¥ (227)
= [D[, DJ]\I/ + lk’}/JD[\If - lk’}/[DJ\I/ + lkZ’yIVJ\I/ - lk’)/JVI\IJ (229)
1
= —ZRabey“b\If + ik (—iky ) — iky (—iky, @) +0 — 0 (230)
1
= _ZRabInyab\IJ — 2]{32’)/[J\Ij (231)
1
= _Z(RabIJ + 8k Nar s )Y (232)

The generic assumption implied ®* are pointwise linearly independent at least at one point,
p. Thus, the U4 are also linearly independent at p.

However, then the ¥4 are pointwise linearly independent everywhere (on X)), as follows.

Let U = ¢4 U4 for some constants, c4.

V[\I/A =0 = V;v=0.

Suppose ¥ = (0 at some point, q.

Choose a curve from ¢ to p with tangent vector, t/. Then, ! V;¥ = 0 is a homogeneous, linear,

8The boundary conditions for the ¥4 PDE only have half the degrees of freedom of each ®4, so perhaps
this conclusion is more non-trivial than I'm making it sound.
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1st order ODE problem with initial condition, ¥|, = 0.

Since ODEs have unique local solutions on smooth manifolds, it must be that ¥ = 0 everywhere
on the curve.

However, ¥ = ¢, ¥4 = 0 at p implies ¢4 = 0 by {¥4}%_,’s linear independence at p.

Hence, the ¥4 are indeed pointwise linearly independent everywhere.

.. Equation implies (Raprs + 8k20armps )7 = 0.

Since {y®} are also linearly independent, it must be that Ry = —4k%(Narss — Nasfor)-

It remains to be seen what happens for R.y;.

Rikor = Rorox = —(Mosnrx — Moxnry) = 0.

That leaves Rojor = —Roors — Rorjo = Roro-

Since a basis of W is allowed, equation also implies T%%vyy, = 0. But, the eigenvalues of
Ty, = 0 are T 4 /TOITY | so it must be that 7% and T% are both zero, i.e. T% = 0.
By the dominant energy condition, —7'% V? is future directed and causal whenever V@ is future
directed and causal.

Choose V@ = §9 4+ §% for some value of I.

STV =T —TY% =0 —§v/T71.

However, this can only be causal if 77/ = 0.

.. Ultimately, Ty, = 0.

Rab = Anab = _12k2nab-

_12k251J = Ralaj = —Roros+ RKIKJ = —Roro7 — 4k2(5KK(5[J — 5KJ(5K[) = —Roro5 — 8]{?2(5[J.
R(]]OJ = 4k26[J.

-, Putting all the components together, Raped = —4k*(Nachbd — NadMbe)- O

More generally, one may wonder whether this converse applies if m(S) = 0, which could happen
if Q4P has just one non-trivial vector in its nullspace, rather than every vector being in the
nullspace. This problem is considerably harder even in the asymptotically flat or asymptoti-
cally hyperbolic context - see [37, 38] for recent progress in those cases - and I will not consider
it in this work.

My definition of quasilocal mass is closest in spirit to Penrose’s definition, albeit I can make-
do with spinors instead of twistorsﬂ In particular, my Q“? is analogous to his “kinematical
twistor” - see the material around equation 23 in [20] - while my T4 is analogous to his
surface “infinity twistor” - see the discussion between equations 25 and 26 in [20]. Meanwhile,
my definition is also closely related to the Dougan-Mason mass. When A = 0, the left-handed
and right-handed sectors of all the equations decouple, meaning it suffices to simply set the
right-handed sector to zero. Then, A, B,--- only run 1,2. Thus, my T%Z can be normalised
to ¢4P and one can use it to manipulate two-component spinors with Q4? now viewed as P44,
a 4-momentum converted to two-component spinors. Then, my definition can be recast as

—2567°m/(S)? = tr(QT'QT ") = QP TpcQPTpa = PAAe 5 PBBe s (233)

which is the Dougan-Mason mass (up to normalisation). However, since Dougan and Mason
have a full energy-momentum vector, P44, they are able to further decompose m(S) into a
quasilocal energy and quasilocal linear momentum. This decomposition is lost in my definition
- as it is in Penrose’s definition when S is away from Z. While the technical reason is simply
that A, B,--- run over four indices, instead of two, it remains to be seen whether there is a
deeper physical reason for this discrepancy.

9In fact, as foreshadowed in [39], it is desirable to not use twistors if possible and this was one of the
motivations behind constructing the Dougan-Mason mass.
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5 Highly symmetric examples

For an arbitrary surface, S, the quasilocal mass of definition 4.11| will likely be very difficult, if
not impossible, to calculate analytically. However, if the surface has a high degree of symmetry,
then more progress can be made. In section I’ll study spherically symmetric spacetimes and
show my definition reduces to the Misner-Sharp masﬂ [40] of such spacetimeﬂ. Likewise, in
section [5.2] I'll study toroidal symmetry, where it will turn out that a number of assumptions
required for definition don’t hold. The canonical examples of spacetimes with such high
symmetry are the Schwarzschild spacetime and its variations, described by the metric,

dr @ dr 2 (o)
¢ 234
c—2M/r—|—4k2+Tg ’ (234)

oM
g:—(c——+4k2) dt @ dt +
T

where ¢ = 1, 0 or —1 and ¢ is the standard metric on the round 2-sphere, the 2-torus or a
compactified 2D hyperbolic space respectively.

5.1 Spherical symmetry

Definition 5.1 (Spherical symmetry in double null coordinates). For any spherically symmet-
ric spacetime, let v be the area-radius function and let u € v be null coordinates normal to the
symmetry spheres, S?. Then, in such “double null” coordinates, spherical symmetry dictates
the metric is

g=—Qu,v)*(du ® dv + dv ® du) + 7(u, v)*gge. (235)

for some function, Q(u,v). Without loss of generality assume u is outgoing and v is ingoing,
1.e. Oyr >0 and 0,r < 0.

Definition 5.2 (NP tetrad in spherical symmetry). For any S? in a spherically symmetric
spacetime, choose the NP tetrad,

10 10 1 0 i 0
l=—=— n=—=—andm=——= (= — . 236
Qow " T 0o M T (aa T o) a¢) (26)
Lemma 5.3. For the tetrad chosen in definition
Our 0T 1
=)A= = S d f=—a=——-cot(h). 2
o 0, p=—7- n=g- and f=-a 2\/§TCO() (237)
Proof. The proof is to simply calculate each NP coefficient directly.
o= —-m"l, (238)
= —m"m”9,l, + m"m"T" 1, (239)
1
=0+ §m“m”lp(8ug,,p + 0vgpu — 0p9u) as 1, doesn't depend on 6 or ¢ (240)
1
= —Ql”m“m” 9, @s g has no cross terms between du & dv and df & d¢ (241)

_ 1 ( L o)+ — g (r281n2(9))> (242)

20\ 227" 2r2 sin?(9)
—0. (243)

10The Misner-Sharp mass is usually taken as the standard mass for spherically symmetric spacetimes [14].

1While this could appear to be merely a sanity check, in fact it is non-trivial. For example, the Brown-York
mass [27] does not agree with the Misner-Sharp mass and in fact produces m(S?) = (1 — /1 — 2M/r) in the
Schwarzschild spacetime (with A = 0) despite being physically very well-motivated.
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Similarly, A = m%dn, = 0 too. Also analogously,

p = —m“l, (244)
= 1T O (245)
- (2%2@“(7«2) " %ﬂiﬁ(@)@(r? sin2(0))> (246)
= —%L:: and (247)
et = = (M) IO 0
It remains to find o and S.

B = %(m“dma —n%ol,) (249)
! (m*m”d,m, — m"m"T? ,m, — n"m"o,l, + n*m"T’ 1) (250)
= % (m"m”d,m, —m*m"T*,,m, — 0+ n'm"T? 1,) as m"d,l, = 0. (251)

Consider each of these terms separately.
nfm e, L, = %l"n"m”(%gup + 0 9on — OpGyu) (252)

1
= él”n“m” L, Jpu 38 ¢ has no cross terms between du& dv and df & d¢  (253)
=0 as gu, doesn’t depend on 6 or ¢. (254)
cot(6)

L m, = ! = 9 i r? sin? =
mm o T 27“sin(9)\/§a (rsin(@)ﬁ (9)> 2V/2r (255)

m'm”o,m, =

T,y = Sl D+ O — D) (256)
- %m”m“m” 1 Gvp (257)
— S Doy (258)
- %r sin(le)\/ﬁ r\1/§ r sin(lH)ﬂae (r5in(6) (259)
_ cot(0) (260)

2r\/§ '

Putting the different terms together, I get g = ﬁ cot(d). Finally,

cot(0)

1 < - 1 1
a= §(m“5ma —n%l,) = §(ma6ma —n%l,) = 5(—m“5ma —nl,) = — (261)

using the calculations above for m*dm,, and n*dl,. O

Corollary 5.3.1. For Schwarzschild-AdS, the conditions imposed on 0, and 6, in definition
[4.11] are equivalent to r > 2M.
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This result is somewhat mysterious because r = 2M is no longer a special radius once a
cosmological constant is added to the Schwarzschild metric.

Proof. By lemma [2.3) the conditions to check are p,p < 0 and pp = —%191971 > 2k%. These
conditions are all invariant of the actual NP tetrad chosen. For the purpose of this corollary,
it will be easier to swap the [ and n used above for

1 /10 0 1 /10 0
l=—(s=+f=) and n=— (== - f= 262
7 Gat ) == (e fa): (262)
where f = /1 — 2M/r + 4k2r2. Then, proceeding as in the main lemma yields
f
=p=——". 263
PER="10 (263)
2 1 =2M/r + 4k*r?

: === . 264
MR 50 2r2 (264)

.". The required condition on up is equivalent to r > 2M.
1, p < 0 is automatically satisfied when r > 2M. O

Lemma 5.4. The general solution to m*V,® on S? has
a(§) = (1/23/1/2,71/2> + Co (1/2Y1/2,1/2) ; (265)
b(p) = c3 (71/23/1/2,71/2) + ¢4 <71/2Y1/2,1/2) ; (266)

2 ) 2 .
a(@) = - (%—av(r)% + 21]€T02> (1/2Y1/2,—1/2) - <%3U(T)C4 - 21/€T61) (1/2Y1/2,1/2) ) (267)

V2, V2,
b(f) = (ﬁﬁu(r)cl + 21]€TC4) (_1/2}/1/2,_1/2) + (ﬁau(T)CQ — QIkTCg) (_1/2}/1/271/2) s (268)
where c4 are arbitrary constants and (sY;m,) are spin-weighted spherical harmom'cﬂ.

Proof. Since a(p) & a(§) are type-(0, —1) and b(¢p) & b(&) are type-(0, 1) in the GHP formalism,
lemma [5.3| implies the m*V,® = 0 equations from lemma [4.3| reduce to

0= 7 (% — ;2 — 1Cot(Q)) b(y) and (271)

1 0 i 0
0= m (% + m% - 5 COt(Q)) (I(f) (272)

Let 8, and 0, be differential operators that act on functions, F, by

0. F = —(sin())* <% + ?1(0)3%) ((sin(g) °F) (273)
— scot(0)F — (% + Smi( 5 a%) F and (274)
0.5 = ~(6in(0) (g5 = g ) (GO (275)
— _scot(0)F — (% _ Sjn—i(e)%) P (276)

12The exact expressions for the four spin-weighted spherical harmonics I'll need are listed in appendix
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‘. The m*V,® = 0 equations above can be written as

V2

0 =Byppal) = 5 Oul(r)b() + 2irka(s), (277)
0=0_1/2b(§) — \g@u(r)a(f) — 2irkb(y), (278)
0=0_1/2b(¢) and (279)
0 =81 2a(¢). (280)

The spin-weighted spherical harmonics, (;Yj), are known [31] to be eigenfunctions of d, and
Og; in particular

0, (Yjm) = V(i =) + 5+ 1) (s61Ym) (281)
05 (Yjm) = =V (i +5)(j —s+1) (s-1Yjm) and (282)
(sY;m) = (_1)S+m (st’j(—m)) . (283)

Furthermore, they form a complete basis for expanding functions on the round sphere.
*. It immediately follows that the solutions to equations and are

b(p) = c3 (—1/25/1/2,—1/2) +Cy (_1/23/1/2,1/2) and (284)
a(§) =& (1/23/1/2,_1/2) + G2 (1/2Y1/2,1/2) (285)

for some constants, cq, ¢, c3 and c4.
Substituting these into equations and then says

i V2
O12a(p) = (ﬁav( r)cs +21/€7’02) ( 1/2Y1/2, 1/2)
(%8 C4 — 21]€7"Cl) 1/2}/1/2 1/2 and (286)

2
0_1/2b(§) = (\/ﬁ—au(r)cl + QikTC4) (1/23/1/2,71/2)

2 -
+ (%871(7’)62 — 21]@’7"03) (1/2Y1/271/2) . (287)

The claimed expressions for a(p) and b(§) then follow by once again applying the completeness
and eigenfunction properties (under 95 and 0;) of spin-weighted spherical harmonics. U

Definition 5.5 (Misner-Sharp mass). Including a cosmological constant, the Misner-Sharp
mass for spherically symmetric spacetimes is defined to be [40]

mars(S2) = g (1+ 4K — (" — B) Dy (r) Dy(r)) . (288)

Theorem 5.6. m(S?) agrees with the Misner-Sharp mass (with cosmological constant) for
spherically symmetric spacetimes.

Proof. Taking the four c4 to be the coefficients multiplying the four linearly independent

27



solutions, from computer algebra it follows that

Our 0 0 —ikQryv/2
QP = 47(20,(r)0u(r) + Q*(1 + 4k*r?)) 0 Our 1kQry/2 0 (289)
- 03 0  —ikQrv2 -9, 0 ’
ikQry/2 0 0 —0yr
0 —0,r  —ikQrv2 0
1 Our 0 0 —ikQry/2
AB _ u
745 = 0 likorva 0 0 o and hence (290)
0  kQrv2 O 0
0 Oy —ikQrv2 0
4 Y —0yr 0 0 —ikQry/2
T = . . (291)
Du(1)0y (1) + 2k20272 | 1kQrv/2 0 0 Oy
0  kQrv2 =0, 0
Then, again kneeling at the altar of the computer for matrix algebra yields
1 —_ r [ 2
2y _ _ 1) 2 2
m(Sz7) = Tor —tr(QT1QT) = 3 (ﬁau(r)&,(r) + 1+ 4k"r ) : (292)

which is the Misner-Sharp mass in double null coordinates (note the Misner-Sharp mass is
manifestly coordinate independent). O

Corollary 5.6.1. For the Schwarzschild-AdS spacetime, m(S?) coincides with the mass pa-
rameter, M, in the metric.

Proof. The Misner-Sharp mass for Schwarzschild-AdS is most easily calculated in the standard
(t,r,0,¢) coordinates instead of double null coordinates. Hence,

1
1+ 4k2—2M/r

r

m(S;) = 3

(1 + 4k + Oi(r)? — (1 + 4k* — 2M/7")8T(7")2) =M, (293)

as expected. O

5.2 Toroidal symmetry

In this section I'll consider some toroidal examples. I'll start with the toroidal Kottler space-
time, i.e. the ¢ = 0 case in equation and then consider the AdS soliton [4I]. It will turn
out that my quasilocal mass construction is not possible in either example.

Definition 5.7 (Toroidal Kottler). The domain of outer communication of the toroidal Kottler
spacetime is R x [rg, 00) x T? with the metric,

dr@dr

g=—f(r)?dt ®dt+ )2 +72(df ® df + do ® do), (294)
where f(r) = \/—¥ + 4k2r? (295)

and (0, ¢) are coordinates on each T? = S' x S*.

In this subsection, I'll always choose S to be the “radius”-r surface, T2
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Definition 5.8 (NP tetrad for toroidal Kottler). For any T? in toroidal Kottler, choose the
NP tetrad,

1 /10 0 1 /10 0 1 0 0
= Gat ) m= s (o tar) mim= s (ig) - @
Lemma 5.9. For the tetrad chosen in definition[5.8,

JzA:a:ﬂ:Oandp:M:—L. (297)

V2

Proof. Follow exactly analogous steps to lemma [5.3] U
Corollary 5.9.1. The 0,0,, < —8k?* assumption never holds.

Proof. From lemma , the 6;,, conditions reduce to f > 2rk (as they did for Schwarzschild-
AdS). However, unlike Schwarzschild-AdS, because f = /—2M/r + 4k2r2 < V/4k*r2 = 2kr
this condition never holds. O

Corollary 5.9.2. The m*V,® = 0 equations from lemmal[].3 reduce to

1 o .0 f : _
0= = (3~ ig ) al) — L) ~ ikvaace) (298)
1 (0 0 f -
0=—= (ae +la¢> b(E) + Tﬁa(g) + ikV2b(p), (299)
1 o .0
1 o .0
Proof. Direct substitution, with a(y) & a(§) being type-(0,—1) and b(¢) & b(€) being type-
(0,1) in the GHP formalism. O
Theorem 5.10. The general solution to m*V,® =0 on T? has
a(p) =c1, a(§) =0, b(p) =0 and b(§) = ¢, (302)

where ¢; and co are arbitrary constants.

Note that the ®* form of generic immediately fails because there are only two linearly inde-
pendent solutions, not four.

Proof. Let z = 6 — i¢p define the complex variable on the torus.
S 0=3(z+2) and ¢ = (2 — 2).

L0 009 090 1[0 .0
'%_8289+8z8¢_2( +1i )and (303)

g 0990 090 1,0 .0
9z 0:00 0200 2 (ae la¢) (304)
.. The equations in corollary can be re-written as
0 = 20.a(p) — fbl) — 2kra(€), (305)
0 =28.0(¢) + fa(€) + 2ikrb(p), (306)
0 = 0:b(¢) and (307)
0 = d.a(g). (308)
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.. By Liouville’s theorem, b(¢p) and a(£) must be constants, say c3 and ¢4.
.. The remaining two equations become

1 1
Oza(yp) = §(f03 + 2icgkr) and 0,0(§) = —E(f@ + 2icskr). (309)
Since r is also just a constant on T?, the equations can be immediately integrated to

alp) = 5 (Fes + 2ieskr)z + er(2) and b(E) = —3 (feu + 2ieshr)z T ea(2)  (310)

for some holomorphic functions, ¢; and cs.

However, by Liouville’s theorem, ¢; and ¢, must be constants.

Furthermore, T? has 27 periodicity in the 6 and ¢ coordinates which neither (fcz + 2icskr)z
nor (fey + 2icskr)z do.

o fes + 2ie kr = 0 and féy + 2icskr = 0.

.3 = —21}”04 and (f - %) ¢y = 0.

Since f? < 4k?r?, the only solution is c5 = ¢4 = 0. O

Corollary 5.10.1. Taking the two linearly independent solutions to be
(a(p), b(p),a(§), b(s)) = (1,0,0,0) and (a(p),b(v),a(§),b(§)) = (0,0,0,1), it follows that

AB __ o | —f —2ikr AB __
Q8 = 8vor?r [2ikr ! ] and TAP = 0. (311)
Proof. By definition,
QAB
=4 [ (pale)ale") + (e HEP) = pale)a(€”) — bl ")
+iEV2(b(EMa(”) — ale)b(ER) — aleMb(e”) + E(SOA)é(SB)))dA (312)

_ 4(2mr)? (—% (a(e™)a(e®) + HENBE®)) + IV (b(ENale”) - a<¢‘>b<sB>>) (313)

= 8v2r*r (—f (ale™)alp®) +b(EMB(ED)) + 2ikr (b(EM)a(p®) — alp™)b(E"))) (314)

_ o | —=f —2ikr

= 8V2r’r [Qikr . ] . (315)
Meanwhile, T4% = v2 (a(0*)b(0”) — a(®)b(¢?) + a(€”)b(¢") — a(¢*)b(EP)).

. TAB = ( because both solutions have b(¢) = a(¢) = 0. O
Since TAB = 0, the TP form of generic fails too and m(T?) cannot be defined using the

prescription I've developed in this work. The wider implications of this example are as yet
unclear; it is possible my definition simply doesn’t work for most non-spherical surfaces.

The next example dampens optimism further.

Definition 5.11 (AdS soliton). The AdS soliton is defined to be the spacetime, R X [ry, 00) x T2,
with the metric,

g=—ridr@dr+ % + f(r)?dw @ dw + r?dé @ d, (316)
2M
where f(r) = \/—T + 4k*r?, (317)

1o is the solution to f(rg) = 0 and (w, @) are coordinates on the T?. ¢ is taken to be 27 periodic
while w ~ w + m/3k*rg.
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This spacetime is constructed as per the procedure in [4I]. In particular, start with the toroidal
Kottler metric and define new coordinates, 7 = i# and w = it. Analytically continue the
coordinates so that 7 & w are real, unwrap the the 7 coordinate so 7 € R and compactify the
w coordinate so that (w, ¢) are coordinates on a torus. The periodicity of w is chosen so as
to avoid a conical singularity at r = r¢, although I won’t need the actual periodicity for what
follows. Since the metric is found just by analytic continuation, the vacuum Einstein equation
continues to be satisfied. Note that there is no longer any black hole; this really is a soliton.

Definition 5.12 (NP tetrad for the AdS soliton). For any T? in the AdS soliton, choose the
NP tetrad,

SIS R R U S U L SRS U S WIS A W
V2 \ror or 7n_\/§ ror ar ) " m_\/§ fow rde)’
Lemma 5.13. For the tetrad chosen in definition

3M 8k2r3 — M 2 4 12K%2
a:ﬁzo,a:)\:——andp:p:—r—:—H—T. (319)
2212 f 2212 f 421 f
Proof. Follow exactly analogous steps to lemma [5.3] U
Corollary 5.13.1. The 6, and 0,, assumptions always hold.
Proof. Since = p < 0, by lemma , all I need to show is pu? > 2k%. Observe that
4M?
0 < 64k*rM + ——. (320)
r
4,4 2 2 4M? 4,4
- 160k r" — 80k“r M < —16k"rM + —— + 160k™r (321)
r
2M 2M ?
-, 40K*r? (—— + 4k2r2> < (—— + 4k2r2) + 144k*r* (322)
r r
AR R < ft 4 144kt (323)
SOBARRPRFT < f 144K 4 24822 7 = (f 4 12K%%)? (324)
2 2,212
+ 12k*r?)
< U = 325
L2 < s 72 (325)
as required. O

Theorem 5.14. The only solution to m*V,® =0 on T? is & = 0.

Proof. Package the GHP components of ® into a vector, [a(y),b(¢),a(£),b(¢)]T. Then, with
the NP coefficients calculated, the equations of lemma become m*d,v = Av, where

0 —up ikv2 0 0 8k —M dikr?f 0
g 0 0 0 1 —3M 0 0 0

A=1g o 0 =Xl 2y2r2f | O 0 0 sar|  (320)
0 ikv2 p 0 0 4ikr?f  —(8k*r* = M) 0

is effectively a constant matrix on TZ.

{m,m} induces a complex structure on T?. Choose a corresponding complex coordinate,
z= \/ii(fw — ir¢), so that m*9,, = 0, and m*9, = 0s.

.. The equation to solve is 0;v = Av. Integrating immediately yields

v =e*e(2) (327)
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for some holomorphic vector, ¢(z).

However, by Liouville’s theorem, ¢(z) must be a constant vector, c¢. But, then v would be a
globally defined, non-constant, antiholomorphic vector on the compact space, T?, contradicting
Liouville’s theorem.

The only way around this is to have ¢ € nullspace(A), so that the z dependence falls ouﬁ in
v = e*4c. However, from computer algebra,

det(A) = (u* — 2k*)\* > 0. (328)

.. The only solution is v = 0 and m*V,® = 0 has no non-trivial solutions. O

6 Asymptotic limit

The next criterion I'll check for a good quasilocal mass definition is the asymptotic limit at Z.
In this section, it will be convenient to set the “AdS length scale,” to onﬂ. Equivalently, one
would choose units such that A = —3 and k& = 1/2. The length scales can always be restored
on dimensional grounds.

Definition 6.1 (Asymptotically AdS). A spacetime, (M, g), is said to be asymptotically AdS
if and only if only if 3 coordinates, (r,x™) = (r,t,0%), in an open neighbourhood of the “bound-
ary” at mﬁmtﬁ such that {r = oo} is the “boundary” itself, constant r and t surfaces are
diffeomorphic to S?* and g admits a Fefferman-Graham expansion [{2],

1 2 1 2
g = 62T( — <]_ —|— Ze_%) dt ® dt + (]_ — Z€_2T> gs2

+ e fiaymn dz™ @ dz” + O(e““)) +dr ®dr. (329)
Lemma 6.2. The metric on AdS can also be written ad™
1+p?)* 4 I J
=— dt ® dt + ———==9d7,d d 330
JAdS (1—p2) ® dt + =2 dr” @ dr (330)
1+ p? 2 4 4p?
=— dt@dt+ ———=dp®dp+ —————=9gs2. 331
(175) ot = oot 2 e Y
Then, with the tetrad,
1—p? 1—p?
ey = r;at and e = 2p ar, (332)
the Killing spinors of AdS can be written as
1 )
ep = ——— (I —izpy") "%, (333)
1—p?

with €y an arbitrary spinor that’s constant with respect to the chosen tetrad.

131n fact, the toroidal Schwarzschild-AdS example earlier can be analysed in exactly this way. Sinceoc = A =0
in that example, the analogue of A has two rows of zeroes, which then yield a 2D nullspace and the two constant
solutions in equation

14The real reason of course being that this is what is usually done in the asymptotically locally AdS literature
and I can’t be bothered tracking where all the factors of k should go.

5First of all, such a notion of “boundary” at infinity should exist on (M, g).

16Note that in this context p equals y/x;z! and not the p in the NP formalism, which will not appear
explicitly.
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Proof. See [13]. O

Definition 6.3 (“Conserved” quantities). In an asymptotically AdS spacetime, define the en-
erqy, linear momentum, angular momentum and centre of mass position as

3

e et (331
Pr= % Saﬁf(s)aﬁ-@fd(gsﬂa (335)
Jiy = % fipo (xlgei - @% p:1)d<952) and (336)

K= / fonaas| (01 = #'01) dlgs) (337

respectively. In these expressions, 0% denote local coordinates on S%, s*° is the inverse of the
round metric on S?, S% is the sphere at infinity, 1 denote unit vector Cartesian coordinates

and p = vxxl, ie. 2l = pil.
These definitions are explained in greater detail in [13].

Theorem 6.4. When S = S2, i.e. the sphere at infinity in an asymptotically AdS spacetime,

Q(P) = Q(ex), where ¢, is a Killing spinor of AdS.

Proof. AdS itself has four linearly independent solutions to V,® = 0, namely the the 4D space
of Killing spinors, .
. In AdS, the 4D space of solutions to m*V,® = 0 can be spanned by the Killing vectors
themselves.
By definition , the difference between g and gaqg is O(e™").

. In the asymptotic region of (M, g), ® = g, + Z for some Z that’s O(e™") below leading

order Equating 7= zzdp @ dp with dr @ dr in lemma shows ¢y, is O(e’/?) and thus Z must
be O(e™"/?).
In the context of Fefferman-Graham expansions, I'll work in a vielbein where P, = —d,¢ and
Qa = 5(11 =dr.
~Q@)= [ PaEe(@)a (338)
S5
= / E"(®)dA (339)
52
= / (@1 V4D + V(D)7 D) dA (340)
S5
= Qer) + | (EW''Vask + ey VAZ + 2y VAZ + Va(er) "Y' 2
83
+ Va(Z2) ' e + Va(2) vy 2)dA. (341)

From equation [329] dA is O(e?").
o ZTyIyAV 4 Zd A and V4 (Z2)TyA41 Zd A are both O(e™") and go to zero as r — oo.
From [13], V & is also O(e™™"/ 2) in the asymptotic region.

o 2T AV e, d A and V4 (gx) 929t Zd A similarly contribute nothing.

QD) = Qep) + /S 2 (I v VAZ + Va(2) vy ey ) dA. (342)
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The 2nd term is the complex conjugate of the first so it suffices to prove the 1st term integrates
to zero. Begin by re-writing the integrand as follows.

1
eV 'VaZ =iy DaZ + Sely'y a2 (343)
= DA(gl];’ylfyAZ) — DA(ek)T'ylfyAZ — igltfylZ (344)
: t
i )
= Da(efy'v*2) — Valer) W' 2 - <_§7A5k) YVAZ—iefy'z (345)
1 )
— DA(ehlyAZ) — VA(sk)leAZ + 5527/1717’42 — 152712 (346)
= Da(ely'v*2) = Va(er) ' 2, (347)

I've already found above that V 4(g;,)’v'7Z contributes nothing to the integral.

g / el AV A (Z)dA = / Dalelr'4A2)dA. (348)
52 52

oo

Let Df) be the intrinsic Levi-Civita connection of S, let Ky be the extrinsic curvature of X
in M and let cyp be the extrinsic curvature of S in 2. Then,

Da(ely'yA2) = Da(er) /A Z + ely'yADA(2) (349)
= (D,(4S)€k - %KAI’YI’YO% - %CAB’YB’Yl%)T’Yl’YAZ
+elyiyA (Df)z — %KAWIVOZ — %CAB’yB”ylZ) (350)
_ Df)(gz’Yl’YAZ) + %KAI(é?L”YO’YI’Yl’YAZ _ 52717‘471702)
- %CAB(SLVWB VHAZ + el Py 2). (351)

The measure, dA, is O(e*") while the 4-Z products are already O(e™?").

.. To get a non-zero integral as r — oo I only need to take the extrinsic curvatures to leading
order, which is nothing but their values in AdS.

AdS is time symmetric, so K;; = 0 to leading order.

Meanwhile, cap(vyPyy4 + Y9294 = cap(—(11)*vB44 + (v1)2449B) = 0 as extrinsic
curvatures are symmetric. That leaves

I
by Stokes’ theorem.
Equation then implies Q(®) = Q(ex). O
Corollary 6.4.1. When S = S%, m(S) = /E? — ||P|]> + [|J]|? — || K] [2.
Proof. From [13],

el AV 4 (Z)dA = / DY (el Z)dA = 0 (352)
S

2 2
oo o

Qer) = 8%53(3‘”0”2 <EI —iPy! + K0! + %J1J7071J> et (353)

.. The four components of the constant spinor, ¢y, parameterise the four linearly independent
solutions, ®4.

- QAP =82 <EI — 1Py 4+ Ky + %J1J7071J> e"t/2 (354)
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To calculate m(S2), I also need to find TZ in this context. Given I'm using Dirac spinors
here, T4 is most easily calculated using the alternative expression, T4% = (®1)TC~1®5, of
equation [214} In the conventions chosen, (7,)7 = —C~1~,C.

L TAP = (eHTC el (355)
=7 _:lp2 (=T (em%p)T (I —izr (/1) €~ (I — iz ) ei'yot/2goB (356)
= : _1p2 (EOA)TC'_le_th/QC (I + i$lc—1,ylc«) ot (I . ixjv‘]) ei'yot/QEOB (357)
=7 —1p2 (654)TC’1e*”0t/2 ([ + ixl,yf) (I . ixﬂj) ei'yot/Zgg (358)
=1 _1p2 (56‘)TC*1e’”Ot/2 (I + xIxJ,yI,yJ) emOt/2€OB (359)
= T ETCT e 1T (360)
=%, (361)

Finally, outsourcing matrix algebra to the computer,

1 —
m(S%) = 1o/~ (QTQT ) = VE?— PPl 1 J;JT — K K, (362)

T
where J[ = %EIJKJJK. Ol

The question naturally arises whether \/E2 — ||P||> + ||J||* — || K|[? is an appropriate notion
of mass in asymptotically AdS spacetimes. For example, from special relativity, one thinks of
mass as just \/E? — || P||?, without any contributions from angular momenta, J;;, or boost
charges, K;. However, it can be argued this is an artefact of Minkowski space’s symmetry
group, namely the Poincaré group. As in QFT, one could define m? to be proportional to a
quadratic Casimir operator for (the Lie algebra of) the symmetry group [30]. Therefore, in the
AdS context, I have to first find a quadratic Casimir for o(3, 2).

Definition 6.5 (Jyn). Choose generators, {Jyn = —JnmYayn—1, for 0(3,2) such that the
defining Lie bracket ZE

where nyn = diag(—1,1,1,1,—1) and all M, N, --- indices are raised/lowered by n~' /n.
Lemma 6.6. C = %JMNJMN is a quadratic C’asz'mz' for o(3,2).

Proof. By definition, a Casimir operator is one that commutes with all elements of the Lie

1"The fact such a basis exists can be seen immediately by following the analogous steps in [43] for o(3,1).
18 Assume I have a faithful matrix representation of the Lie algebra so that multiplying two Lie algebra
elements is well-defined.
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algebra.

1
[, JMN] = 5[JPQJPQ, JMN] (364)
1 1
= 70T g + 5 TpalI O, T (365)
i
~ 3 (M7 ING — pMOINT — pNP JMQ o pNQ JMP) Jpg,
— 5 Tpq (M7 ING = pMRINE NP JMQ g V@ JMF) (366)
= (=YY + TV IPM 4 QTN = TMP TN = TG ING 4 T M N
+ IV IMC — TN JME) (367)
= 0. (368)
.. C is indeed a Casimir operator. O

Interpret J°* as a 4-momentum generator, P?, J% as boost generators, K/, and J!/ as angular
momentum generators, J; = %6 rixJ7E, in line with [10] and the logic used in [I3] for definition
[6.3] Then,
1
C=J"Ts + §J”J1J + J Jo; (369)
= PP’ — P'P; + '], - K'K; (370)

suggesting that the limit in corollary is physically reasonable.

7 Linearised gravity

In this section, I'll consider perturbations of AdS sourced by a matter field. In particular, the
metric is assumed to be

Gab = Bab + nhaba (371)

where B = gaqs is the background metric, h is the perturbation and 7 is assumed to be an
infinitesimal parameter. Furthermore, the energy-momentum tensor, 7,,, is assumed to be
O(n). The aim is to show that definition captures the mass in 7T,,. Throughout this
section I'll use the same coordinates and tetrad as in lemma 6.2, Furthermore, it will once

again be convenient to set the AdS length scale to one, i.e. choose units where A = —3 and
k=1/2.

Lemma 7.1. The Killing vectors of AdS can be spanned by

1= o, (372)
j[J:.TjaJ_xJafa (373)
21‘[ 1 .
Pr=17r 02 cos(t)d; + 2 ((1+p*)d7; = 2072;) sin(t)d; and (374)
233[ 1
= 1y, sin(t)0; + 2 ((L+p*)d7 = 207 2r) cos(t)dy. (375)

Proof. The vectors listed are manifestly linearly independent and AdS is known to have a 10D
space of Killing vectors because it is maximallly symmetric.
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.. It suffices to check that the 10 vectors listed are indeed Killing vectors.

0:g = 0 = t is Killing.

To better distinguish between coordinate and vielbein indices in this calculation, I will relabel
the coordinates as x;. However, I will still have 2 = 2! and x; = x;, i.e. unlike tensors, the
components of the coordinates will not change when swapping vielbein and coordinate indices.

(L5, 9w = 355009 + 9puOuils + GupOuil; (376)
= xiajg;w - xjaig;w + gjuaul'i - giyauajj + g,ujaz/xi - g,uiaumj- (377)

‘ 1+ p? 2 1+ p? 2
..(Ejijg)ooz.iﬂiaj (—(1_p2) >—:1:j61- (— (1_p2 +0-0+0-0 (378)
d 1—1—,02)2 ( T q:Z)
= —— Ti—— — Tj— 379

= 0. (380)
(L,9)o0k=0-04+0—-0+0-0=0. (381)
o 45kl 45kl 45]'1 45@1
(st =5 (725 ) =0 (5 ) + et gt
P T i 52
160y T T 4
= 0. (384)

.". Jij is indeed Killing.

i cos(t))

1 . ) A
(Lp:9)w = 3 sin(t)(1 + p2>8iglw — sin(t)z;27 09 + 290,09, ( 5

301+ ) snlt) — g0, (alsine) + 20,00, ()
F 2001+ ) sin(D)) — g0, (', sin(1)) (385)
(L)oo = sin(t)(1 + )0 (— &) ) —sin(t)ra%0, (— & )
(1t 2 [xicos(t)
4<1—p2) 8t< L+ p? ) 50
_ 4sin(t)(14 p?) oy Li T 2
= BIIOSE) (1 2T+ 2™ b1 7)) (387)
~0. (388)
(‘Cpig>0j
——25ij %) sin ——45kj zFz; sin(t)) — 1+p° i . ; cos(t)
— a1+ i) - ot i) -2 (15) o () s
20y 2\ cos(f) — dx;x; cos(t) — cos(t) S
— o ) eoslt) = s cos(t) - 20 (1 03— 2o ) (300
—0. (391)
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('Cpig)jk
= 1sim 2o, (2% _ sin(t)z;a! 4051 2o ?) sin

451k Al 3 26]1 2\ - 45]'1 L
i p2)28j (z;x" sin(t)) + i p2)28’“((1 + p”)sin(t)) 1= pz)zak(xlx sin(t))  (392)
_ 8psin(O)(L+p%) o m 16p8 w2 sin(t) x| 4pdgsin(t) x;  4sin(?) (22655 + 2150)
=P Ty L= p (I=p2)2 p (1= p2)2 k0T H0%
4psin(t)dj; x,,  4sin(t)
1—p22 p (1—p2)? (0 + i) (393)
4sin(t
= (1 S_lnp(2;3 (2:51(5%(1 + IO2) - 4Ii(5jkp2 + $j(5ik(l — p2) — xk(sw(l — P2) _ xzékj(l . P2)
+2055(1 = p?) — 205 (1 — p*) — 2:045(1 = p*)) (394)
=0. (395)

.. p; is Killing.
The differences between p; and k; is are only signs and swapping sin & cos. Hence, by following
the same calculation it also follows that k; is also Killing. U

In analogy with definition [6.3], I will define the following “matter charges.”

Definition 7.2 (Matter charges). Let matter charges on ¥ be defined as
Ez/TOat“dV, PI:/TOCLp‘}dV, JIJ:/TOGj}‘JdV and Klz/TO(lk}‘dV. (396)
2 2 b b

Theorem 7.3. For gravity linearised about AdS, if S is generic in the ®* sense, then

m(S) = v/ E* — [P+ [|J]]2 — || K[> (397)

This result is formally identical to section [6] and therefore the result can once again be thought
of as a Casimir mass, but this time for Tg;.

Proof. In AdS, the solutions to m*V,® = 0 can be spanned on any surface generic in the ®4
sense by the Killing spinors, ¢y, restricted to S.

.o Since g = Bap + Nhap, 1 can let & = ¢, + nZ for some Dirac spinor, Z.

Extend Z’s definition off S in an arbitrary, but sufficiently regular, way so that & = ¢, +nZ
is defined on all of X..

.. By definition [2.9

QD) =2 / (Vi(®)'V/'® — 4rT"®,® — (v V)1V ;@) dV. (398)
2
VPe, =0 = V,0=0(n).
.. The first and third terms in equation are both O(n?).

Meanwhile, since Ty, is assumed to be O(n), the second term is —4xT%&,v,e1 + O(n?).
.. In the linearised limit,

Q(CI)) = 87T/ TOaéwasde. (399)
b))
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From lemma [6.2]

ij’)/o&?k = €L€k (400)
1 : .
=1 ebe T —ixy ) (I — iy ) e (401)
1 . _
1oz ebe AT = 2yt — wpw gy ) e (402)
1 —1 0 . i 0
= —1_p2886 ’Yt/2<(1_’_p2)]_21xl,71)e"/ t/2€0 (403)
and likewise
Exyler = sTfyofylak (404)
1 . ,
=7 2586_”%/2(1 — iz 7)Y (I — iy )e ey (405)
—p
1 | , ‘ i
12 ehe™ (7" —iw sy ) (v — iy ) e (406)
IR 1
=1 pf%e P —im iy 0y — iz — gy ) 2 (407)
IR ' 1
= . p25(§e fYOt/2(,yo,YI . 2195]707[‘] . 2I1%ny ’Y + ,027071) v t/280 (408)
1 —i . .
=1 7 556 7%/2((1 + p2)7071 _ 21%7071‘] _ QZ.IxJ/yO/yJ)e 7%/250. (409)

Substituting back into equation |[399] applying definition and converting to vielbein indices
where required using the tetrad in lemma [6.2] then gives

1 .
Q(q)) = 87(85(/ 1 + p ToodV[ — 21/ 1 11 2T00e_1’yotdv ,}/I o 21/ -
2y b

_'_/
>

1
1 1
:8n55< / Rl sToodV I +1i / s (@1 Tos — x5 Tor)dV 404"
x1—p? s 1—p?

2 t
_ i/ (LO;()TOO + 1sm( ) Tor ((1 +p?)o, — 2xIxJ)) dv !
D)

5 TordV 74"
p?

— 2TOI (1 +p*)8", — 22"z) ety 'yofy‘]> £0 (410)

1_ 2
2xsin(t) cos(t) o\ of / 01
+ ————Too + 5 Tor ((1 +p)0,; — 2z xJ) dV ~4°~+" e (411)
D L—p 1—p?
= 8%58 (EI + %Juvo'y” —iPy + K17071> £0- (412)

Take the four components of the constant spinor, €y, to parameterise the four linearly inde-
pendent solutions, ®4.

1
- QM =8r (Ef + §J1J707U —iPy" + K17071> : (413)

Since Ty, and hence Q4P are already O(n), for the linearised limit it suffices to take T4 to
O( ) in definition m

.TAB = (eTC ey, = (C~HAB | borrowing the calculation from the proof of corollary [6.4.1]
Flnally, evaluating m(S) for this Q47 and T“# using computer algebra gives

where J[ = %{-:IJKJJK. ]

—tr(QT1QT) = VE2+ J;J! — PP — KK, (414)
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8 Conclusion

In this work I've defined a new quasilocal mass for spacetimes with negative cosmological
constant. The new definition is spinorial and based on definitions by Penrose and Dougan
& Mason - which are themselves inspired by Witten’s proof of the positive energy theorem.
I've shown my definition satisfies a number of physically desirable properties - namely that
m(S) > 0, m(S) = 0 for every surface in AdS, m(S?) agrees with the Misner-Sharp mass
in spherical symmetry and m(S) has an appropriate limit, \/E2 — ||P|]2+ [|J||? — || K][?, in
linearised gravity or when S approaches a sphere on Z in an asymptotically AdS spacetime.

Some avenues of further research are immediately apparent at this juncture. This work was
originally inspired by Reall’s suggestion that a quasilocal mass-charge inequality could be es-
tablished for spacetimes with A < 0 and such an inequality could be used to prove the 3rd law
of black hole mechanics for supersymmetric horizons in this context. Having now established
a workable quasilocal mass, a logical next step would be tackling this conjecture. Note that
the 3rd law part of the conjecture might not be immediately accessible though because the
6, > 2v/2k requirement prevents taking S arbitrarily close to the event horizon (where §; = 0).

Even in the field of quasilocal mass itself, some improvements could be made. I've given
two different definitions of generic and it may be interesting to study further how the two
definitions relate. It would be particularly desirable to find an example of a toroidal S where
my construction can actually be completed in full - unlike the examples in section [5.2 Then,
perhaps a more concrete conclusion can be made about whether either definition is generic in
practice or physically relevant for higher genus surfaces.

Elsewhere, in terms of physical properties, one property I did not mention in this work is
the “small sphere” limit. In particular, one hopes that given a point, p € M, and a future
direction, t%, if S, is a sphere reached by flowing an affine parameter distance, r, along the gen-
erators of p’s future lightcone, then a quasilocal 4-momentum for S, would be P* = —4?’77“3T“b tb,
to leading order in r. Then, m(S,)?> = —P*P,. This happens to be true for both the Dougan-
Mason and Penrose masses [10, [44]. For a vacuum spacetime a similar result holds at 5th order
in r based on the Bel-Robinson tensor. It would be interesting to see if the same - or something
analogous - also holds for my definition. Unfortunately, this was a calculation I did not make
much progess on.

Furthermore, while my definition has good quantitative properties, it does share the quali-
tative failings of many other quasilocal masses. Unlike the Hamilton-Jacobi masses or the
Hawking mass, the physical motivation for my definition is not clear, beyond some supergrav-
ity considerations [45] underpinning Witten’s method to prove the positive energy theorem.
More practically, like the Hamilton-Jacobi or Bartnik masses, my quasilocal mass is likely to
be quite difficult to calculate for most metrics. Not only does one have to find a NP tetrad
adapted to S, one then has to find all solutions to m*V,® = 0 on S. The quest to find a truly
satisfactory quasilocal mass goes on.

Another possible extension would be to consider spacetimes with A > 0 instead. Not only
is the A > 0 case potentially most relevant to the real world, it is arguably also a pressing
need for mathematical general relativity. Many familiar properties of conformal infinity break
down when A > 0 [46] and this precludes defining anything directly analogous to the ADM
[15] or Wang [6] masses. Nonetheless, a number of energy-momentum definitions have been
devised in this context - see [47] for a review. Particularly relevant to the present work are
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extensions based on Witten’s method [48], 49]. Ultimately though, these successes still have to
work around the global challenges imposed by A > 0 - e.g. compact Cauchy surfaces, spacelike
Z™" or cosmological horizons. It may be that quasilocal mass is a viable alternative for avoiding
these issues. In fact, an analogue of Penrose’s quasilocal mass can be defined for asymptotically
de Sitter spacetimes, albeit it no longer retains some key properties, such as positivity [49, 50].
Likewise, it would be interesting to see if the definition I've developed here can be adjusted for
A > 0 and if so, which of its physical properties remains intact.

A Conventions

My conventions are based off [30]. However, since there are slight differences and most people
in the GR community are unlikely to be familiar with [30], I list the main points below.

Tuse a (—1,+1,+1,+1) metric signaturd™}

The following symbols are frequently used.
e M: The full spacetime

e g: The (Lorentzian) metric on M

3:: 3D, compact, spacelike hypersurface with boundary

S: The boundary of ¥

A: A negative cosmological constant

k= +\/—A\/12

Cy°: The space of smooth Dirac spinors on ¥ subject to the boundary conditions given
in definition [3.1]

H: The completion of Cp° under the inner product in definition

W = Uiy for a Dirac spinor, ¥

D,: The Levi-Civita connection of g

VoV = Dyp + ikv, ¥ for a Dirac spinor, ¥

VU = DU — kW, = (V, V)4 for a Dirac spinor, ¥

I: The identity matrix

{Aa., Bo}: A GHP spinor dyad

0 = m®D, in the context of the NP formalism
e § = m"D, in the context of the NP formalism
I use many different types of indices, as given below.

e a,b,c,--- are vielbein indices running 0, 1,2, 3. However, in most equations it will be
apparent that these could equally well denote abstract indices.

19This is the only sensible convention.
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® L,V p,--- are coordinate indices running 0, 1, 2, 3.
e [, J K, --- are vielbein indices running 1, 2, 3.

e a,(3,7, -+ are two-component spinor indices for the (1/2,0) representation, i.e. left-
handed Weyl spinors, and run 1, 2.

e &, 03,7, are two-component spinor indices for the (0,1/2) representation, i.e. right-
handed Weyl spinors, and run 1, 2.

e A B C, --- run 1,2, 3,4 and index the linearly independent solutions to m*V,® = 0.
The Riemann tensor is defined such that [D,, Dy)V¢ = R, V.

Complex conjugation of an object - unless it is a Dirac spinor - will be denoted by a bar
over the object, e.g. Z.

Levi-Civita symbols are normalised by g1 = —1, €2 = 1, g1 = —1, £
and "% = 1. Then, e*7e,5 = 6°4 and likewise for the dotted indices.

=1, €gi13 = —1

Two-component spinors are raised and lowered from the left, i.e. 1, = e,5¢" and ¢ = e*P4)5.

The extended Pauli matrices are
(04)ac = (I,01,09,03) and (415)
(64)% = gaﬁedﬁ(aa)ﬁg = (I,—0y,—09,—03) (416)

with oy 23 being the standard Pauli matrices.

[ will convert between vielbein indices and two-component spinor indices by Vas = (04)aaV®
and V, = —%(a—a)davm

Dirac spinors are decomposed into two-component spinors by ¥ = [¢, ¥¢]7.

I will use the Weyl representation of gamma matrices, i.e.

= Loy 0] (417)

Oa
Hence, the gamma matrices are unitary and satisfy 79" 4-7°y* = —21*°I.
Furthermore, in terms of two-component spinors, ¥ = Uiy% = [—y* —),].

The charge conjugation matrix is

o Eaﬁ O —1 - gaﬁ O
O—{O 8d6}<:>0 —{0 cas)” (418)

The spin-weighted spherical harmonics I’ll use in section [5| are

i . [0\ i 0\ .
(1/2Y1/271/2) = \/% SN <§> e¢/27 (1/2Y1/27—1/2) = — o COS <§> e ¢/27
1 0\ . i ‘ 9 B
(,1/2}/1/271/2) = \/ﬂ CcOS (5) el¢/2 and (71/2}/1/2771/2) = o sin (5) e ¢/2‘ (419)

Section [6] features some additional or modified conventions as listed below.
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Al

The monogrpahs of Penrose and Rindler [31], 32] have become the standard references for two-
component spinors in the GR community. Unfortunately their conventions differ significantly
at times from mine; I list the key differences below.

Based on context, a, 3,7, - also denote coordinate indices running 2, 3.
Based on context, A, B,C, --- also denote vielbein indices running 2, 3.
m,n,p,--- are coordinate indices running 0, 2, 3.

M,N,P,--- run 0, 1,2, 3,4 and index the embedding Cartesian coordinates when AdS is
viewed as a surface in R32.

The cosmological constant is set to A = —3.

Comparison to Penrose-Rindler conventions

I use a mostly plus metric while they use a mostly minus metric. This is the primary
reason I've chosen not to follow their conventions.

I use lowercase letters from the start of the Greek alphabet for two-component spinor
indices while they use uppercase Latin letters.

My undotted spinor indices correspond to their primed spinor indices and my dotted
indices correspond to their unprimed indices.

I take the two-component spinor indices to run over the values 1 and 2, whereas they
take them to run over 0 and 1.

I convert to spinor indices by V,s = (04)aa V', while they have V4 = %(aa)mva. This

V2 discrepancy appears in a number of equations when comparing the two conventions.

The elements of my spinor dyad, A, and B,, are denoted as o4 and s respectively
in their notation. Unfortunately, ¢, and especially o, are not great letters to use when
writing mathematics, especially by hand, hence why I’ve chosen A and B instead.

The v/2 difference when converting to spinor indices means I require B*A, = BYA, =+/2
A A

while they have 1”04 = ‘on = 1.
For any spinor, 1, my a(¢) and b(¢)) would be called %m and —\%woz respectively in
their notation.

I write Dirac spinors as ¥ = [1h,, Y%7, while they would write [, ¥./|T, i.e. the left
and right handed componenets are written in the opposite order.

[ raise and lower indices from the left, i.e. ¢® = e*Py)5 and b, = .17, while they raise
from the left, but lower from the right, i.e. 14 = ¢4By5 but 14 = 1Pep4. This difference
means I have £'? = 1, but £1, = —1. Furthermore, it means I have e*7e,5 = §%; while
they have e%cp = —645. The asymmetry between raising and lowering indices is the
2nd biggest reason I've chosen not use Penrose and Rindler’s conventions.
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B Frequently used spinor identities

The following are some basic two-component spinor identities I'll use liberally without proof
or explicit mention. Most of them are given in [30].

VOiW,pe = —2VW,

Oc Ba — nca<0-b)ocd - nbc(o-a)oco'c - nab(gc)ao'c + igabcd(ad)ad

3 &c)ﬁa = nca<&b)da - nbc(a'a)da - nab(&c)da - igabcd(&d)

Eape?® = — (67,0% — 8°,07;)

I'll need the following NP coefficients in terms of GHP variables.
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